Neodymium Chloride

NdCl3
CAS 10024-93-8


Product Product Code Order or Specifications
(2N) 99% Neodymium Chloride ND-CL-02 Contact American Elements
(3N) 99.9% Neodymium Chloride ND-CL-03 Contact American Elements
(4N) 99.99% Neodymium Chloride ND-CL-04 Contact American Elements
(5N) 99.999% Neodymium Chloride ND-CL-05 Contact American Elements

CHEMICAL
IDENTIFIER
Formula CAS No. PubChem CID MDL No. EC No IUPAC Name Beilstein
Re. No.
SMILES
Identifier
InChI
Identifier
InChI
Key
NdCl3• 6H2O
NdCl3
13477-89-9
10024-93-8
66204 MFCD00011132 233-031-5 trichloroneodymium N/A Cl[Nd](Cl)Cl InChI=1S/3ClH
.Nd/h3*1H;/
q;;;+3/p-3
ATINCSYRH
URBSP-UHF
FFAOYSA-K

PROPERTIES Compound Formula Mol. Wt. Appearance Melting Point Boiling Point Density

Exact Mass

Monoisotopic Mass Charge MSDS
Cl3Nd 250.60 Powder 758° C
(1,396° F)
1,600° C
(2,912° F)
4.134 g/cm3 246.814 246.814 0 Safety Data Sheet

Chloride IonNeodymium Chloride is an excellent water soluble crystalline neodymium source for uses compatible with chlorides. Hydrate or anhydrous forms may be purchased. Chloride compounds can conduct electricity when fused or dissolved in water. Chloride materials can be decomposed by electrolysis to chlorine gas and the metal. They are formed through various chlorination processes whereby at least one chlorine anion (Cl-) is covalently bonded to the relevant metal or cation. Ultra high purity and proprietary formulations can be prepared. The chloride ion controls fluid equilibrium and pH levels in metabolic systems. They can form either inorganic or organic compounds. Primary applications include lasers, glass coloring and tinting, and dielectrics. NdCl is generally immediately available in most volumes. Ultra high purity and high purity compositions improve both optical quality and usefulness as scientific standards. Nanoscale (See also Nanotechnology Information and Quantum Dots) elemental powders and suspensions, as alternative high surface area forms, may be considered. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement.

Neodymium (Nd) atomic and molecular weight, atomic number and elemental symbol Neodymium (atomic symbol: Nd, atomic number: 60)is a Block F, Group 3, Period 6 element with an atomic weight of 144.242.Neodymium Bohr Model The number of electrons in each of Neodymium's shells is 2, 8, 18, 22, 8, 2 and its electron configuration is [Xe] 4f4 6s2. The neodymium atom has a radius of 181 pm and a Van der Waals radius of 229 pm. Neodymium was first discovered by Carl Aer von Welsbach in 1885. In its elemental form, neodymium has a silvery-white appearance. Neodymium is the most abundant of the rare earths after cerium and lanthanum. Neodymium is found in monazite and bastnäsite ores. It is used to make high-strength neodymium magnets and laser crystal substances like neodymium-doped yttrium aluminum garnet (also known as Nd:YAG). The name originates from the Greek words 'neos didymos', meaning new twin. For more information on neodymium, including properties, safety data, research, and American Elements' catalog of neodymium products, visit the Neodymium Information Center.

HEALTH, SAFETY & TRANSPORTATION INFORMATION
Warning
H315-H319-H335
Xi
36/37/38
26-37/39
QO8750000
N/A
2
Exclamation Mark-Acute Toxicity        

NEODYMIUM CHLORIDE SYNONYMS
Neodymium trichloride, Neodymium(III) chloride, Trichloroneodymium

CUSTOMERS FOR NEODYMIUM CHLORIDE HAVE ALSO LOOKED AT
Neodymium Nitrate Neodymium Powder Neodymium Wire Iron Neodymium Boron Alloy Powder Neodymium Foil
Neodymium Metal Mischmetal Nickel Alloy Neodymium Oxide Neodymium Nanoparticles Neodymium Acetate
Neodymium Pellets Neodymium Chloride Neodymium Sputtering Target Neodymium Oxide Pellets Neodymium Acetylacetonate
Show Me MORE Forms of Neodymium

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis





German   Korean   French   Japanese   Spanish   Chinese (Simplified)   Portuguese   Russian   Chinese (Taiwan)  Italian   Turkish   Polish   Dutch   Czech   Swedish   Hungarian   Danish   Hebrew

Production Catalog Available in 36 Countries & Languages


Recent Research & Development for Neodymium

  • Tao Wei, Ying Tian, Cong Tian, Xufeng Jing, Muzhi Cai, Junjie Zhang, Long Zhang, Shiqing Xu, Comprehensive evaluation of the structural, absorption, energy transfer, luminescent properties and near-infrared applications of the neodymium doped germanate glass, Journal of Alloys and Compounds, Volume 618, 5 January 2015
  • E. Gasnier, I. Bardez-Giboire, V. Montouillout, N. Pellerin, M. Allix, N. Massoni, S. Ory, M. Cabie, S. Poissonnet, D. Massiot, Homogeneity of peraluminous SiO2–B2O3–Al2O3–Na2O–CaO–Nd2O3 glasses: Effect of neodymium content, Journal of Non-Crystalline Solids, Volume 405, 1 December 2014
  • Shanjun Ke, Yanmin Wang, Zhidong Pan, Effect of lithium chloride on crystallization process of neodymium disilicate, Ceramics International, Volume 40, Issue 9, Part A, November 2014
  • H. Zaari, M. Boujnah, A.G. El hachimi, A. Benyoussef, A. El Kenz, Electronic structure and X-ray magnetic circular dichroic of Neodymium doped ZnTe using the GGA + U approximation, Computational Materials Science, Volume 93, October 2014
  • Elmar Willbold, Xuenan Gu, Devon Albert, Katharina Kalla, Katharina Bobe, Maria Brauneis, Carla Janning, Jens Nellesen, Wolfgang Czayka, Wolfgang Tillmann, Yufeng Zheng, Frank Witte, Effect of the addition of low rare earth elements (lanthanum, neodymium, cerium) on the biodegradation and biocompatibility of magnesium, Acta Biomaterialia, Available online 30 September 2014
  • Barbara Skołyszewska-Kühberger, Thomas L. Reichmann, Herbert Ipser, Phase equilibria in the neodymium–cadmium binary system, Journal of Alloys and Compounds, Volume 606, 5 September 2014
  • Xiongwei LI, Mei LI, Mitang WANG, Zhaogang LIU, Yanhong HU, Junhu TIAN, Effects of neodymium and gadolinium on weathering resistance of ZnO-B2O3-SiO2 glass, Journal of Rare Earths, Volume 32, Issue 9, September 2014
  • Allison M. Latshaw, Mark D. Smith, Hans-Conrad zur Loye, Crystal growth and structure of three new neodymium containing silicates: Na0.50Nd4.50(SiO4)3O, Na0.63Nd4.37(SiO4)3O0.74F0.26 and Na4.74Nd4.26(O0.52F0.48)[SiO4]4, Solid State Sciences, Volume 35, September 2014
  • Guicheng Jiang, Xiantao Wei, Shaoshuai Zhou, Yonghu Chen, Changkui Duan, Min Yin, Neodymium doped lanthanum oxysulfide as optical temperature sensors, Journal of Luminescence, Volume 152, August 2014
  • Elisha A. Josepha, Sara Farooq, Cinnamon M. Mitchell, John B. Wiley, Synthesis and thermal stability studies of a series of metastable Dion–Jacobson double-layered neodymium-niobate perovskites, Journal of Solid State Chemistry, Volume 216, August 2014

Recent Research & Development for Chlorides

  • Ahmad Ivan Karayan, Javier Esquivel Guerrero, Homero Castaneda, Single-boss crevice former for studying crevice corrosion of UNS S32003 in chloride-containing solution at high temperature, Journal of Alloys and Compounds, Volume 619, 15 January 2015
  • Wil V. Srubar III, Stochastic service-life modeling of chloride-induced corrosion in recycled-aggregate concrete, Cement and Concrete Composites, Volume 55, January 2015
  • A. Zawadzka, A. Karakas, P. Płóciennik, J. Szatkowski, Z. Łukasiak, A. Kapceoglu, Y. Ceylan, B. Sahraoui, Optical and structural characterization of thin films containing metallophthalocyanine chlorides, Dyes and Pigments, Volume 112, January 2015
  • Agata Bialy, Peter B. Jensen, Didier Blanchard, Tejs Vegge, Ulrich J. Quaade, Solid solution barium–strontium chlorides with tunable ammonia desorption properties and superior storage capacity, Journal of Solid State Chemistry, Volume 221, January 2015
  • E.J.C. Davim, M.H.V. Fernandes, A.M.R. Senos, Increased surface area during sintering of calcium phosphate glass and sodium chloride mixtures, Journal of the European Ceramic Society, Volume 35, Issue 1, January 2015
  • Nurfatimah Abu Bakar, Ching Yern Chee, Luqman Chuah Abdullah, Chantara Thevy Ratnam, Nor Azowa Ibrahim, Thermal and dynamic mechanical properties of grafted kenaf filled poly (vinyl chloride)/ethylene vinyl acetate composites, Materials & Design, Volume 65, January 2015
  • D.G. Li, J.D. Wang, D.R. Chen, P. Liang, Influences of pH value, temperature, chloride ions and sulfide ions on the corrosion behaviors of 316L stainless steel in the simulated cathodic environment of proton exchange membrane fuel cell, Journal of Power Sources, Volume 272, 25 December 2014
  • Li-Ping Yang, Xiao-Min Liu, Yi-Wei Zhang, Hui Yang, Xiao-Dong Shen, Advanced intermediate temperature sodium copper chloride battery, Journal of Power Sources, Volume 272, 25 December 2014
  • Mahmoud Khashaa Mohammed, Andrew Robert Dawson, Nicholas Howard Thom, Macro/micro-pore structure characteristics and the chloride penetration of self-compacting concrete incorporating different types of filler and mineral admixture, Construction and Building Materials, Volume 72, 15 December 2014
  • Dihua Wu, Yifeng Huang, Sanchuan Yu, Darren Lawless, Xianshe Feng, Thin film composite nanofiltration membranes assembled layer-by-layer via interfacial polymerization from polyethylenimine and trimesoyl chloride, Journal of Membrane Science, Volume 472, 15 December 2014