Nickel Powder

High Purity Ni Powder
CAS 7440-02-0

Product Product Code Order or Specifications
(2N) 99% Nickel Powder NI-M-02-P Contact American Elements
(3N) 99.9% Nickel Powder NI-M-03-P Contact American Elements
(4N) 99.99% Nickel Powder NI-M-04-P Contact American Elements
(5N) 99.999% Nickel Powder NI-M-05-P Contact American Elements

Formula CAS No. PubChem SID PubChem CID MDL No. EC No Beilstein
Re. No.
Ni 7440-02-0 24880903 935 MFCD00011137 231-111-4 N/A [Ni] InChI=1S/Ni PXHVJJICTQNCMI-UHFFFAOYSA-N

PROPERTIES Mol. Wt. Appearance Density Tensile Strength Melting Point Boiling Point Thermal Conductivity Electrical Resistivity Eletronegativity Specific Heat Heat of Vaporization Heat of Fusion MSDS
58.69 Black 8.902gm/cc N/A 1453 °C 2732 °C

0.909 W/cm/ K @ 298.2  K

6.84 microhm-cm @ 20°C

1.8 Paulings

0.106 Cal/g/ K @ 25°C 91.0 K-Cal/gm atom at 2732°C 4.20 Cal/gm mole Safety Data Sheet

American Elements specializes in producing high purity Nickel Powder with the smallest possible average grain sizes for use in preparation of pressed and bonded sputtering targets and in Chemical Vapor Deposition (CVD) and Physical Vapor Deposition (PVD) processes including Thermal and Electron Beam (E-Beam) Evaporation, Low Temperature Organic Evaporation, Atomic Layer Deposition (ALD), Metallic-Organic and Chemical Vapor Deposition (MOCVD). Powders are also useful in any application where high surface areas are desired such as water treatment and in fuel cell and solar applications. Nanoparticles (See also Nanotechnology Information and Quantum Dots) also produce very high surface areas. Our standard Powder particle sizes average in the range of - 325 mesh, - 100 mesh, 10-50 microns and submicron (< 1 micron). We can also provide many materials in the nanoscale range. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. See safety data and research below and pricing/lead time above. We also produce Nickel as rod, ingot, pieces, pellets, disc, granules, wire, and in compound forms, such as oxide. Other shapes are available by request.

Nickel (Ni) atomic and molecular weight, atomic number and elemental symbolNickel (atomic symbol: Ni, atomic number: 28) is a Block D, Group 4, Period 4 element with an atomic weight of 58.6934. Nickel Bohr ModelThe number of electrons in each of nickel's shells is [2, 8, 16, 2] and its electron configuration is [Ar]3d8 4s2. Nickel was first discovered by Alex Constedt in 1751. The nickel atom has a radius of 124 pm and a Van der Waals radius of 184 pm. In its elemental form, nickel has a lustrous metallic silver appearance. Elemental Nickel Nickel is a hard and ductile transition metal that is considered corrosion-resistant because of its slow rate of oxidation. It is one of four elements that are ferromagnetic and is used in the production of various type of magnets for commercial use. Nickel is sometimes found free in nature but is more commonly found in ores. The bulk of mined nickel comes from laterite and magmatic sulfide ores. The name originates from the German word "kupfernickel," which means "false copper" from the illusory copper color of the ore. For more information on nickel, including properties, safety data, research, and American Elements' catalog of nickel products, visit the Nickel Information Center.

UN 3089 4.1/PG 2
Exclamation Mark-Acute Toxicity Health Hazard      

Nickel Copper Iron Alloy Nickel Foil Nickel Nanoparticles Nickel Molybdenum Alloy Nickel Pellets
Nickel Oxide Pellets Nickel Powder Nickel Oxide Nickel Sputtering Target Nickel Acetylacetonate
Nickel Sulfate Nickel Metal Nickel Chloride Nickel Acetate Nickel Rod
Show Me MORE Forms of Nickel

Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.

Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis

German   Korean   French   Japanese   Spanish   Chinese (Simplified)   Portuguese   Russian   Chinese (Taiwan)  Italian   Turkish   Polish   Dutch   Czech   Swedish   Hungarian   Danish   Hebrew

Production Catalog Available in 36 Countries & Languages

Recent Research & Development for Nickel

  • Yanjiao Ma, Hao Li, Hui Wang, Xuefeng Mao, Vladimir Linkov, Shan Ji, Oko Unathi Gcilitshana, Rongfang Wang, Evolution of the electrocatalytic activity of carbon-supported amorphous platinum–ruthenium–nickel–phosphorous nanoparticles for methanol oxidation, Journal of Power Sources, Volume 268, 5 December 2014
  • Jie Xiao, Yongmin Xie, Jiang Liu, Meilin Liu, Deactivation of nickel-based anode in solid oxide fuel cells operated on carbon-containing fuels, Journal of Power Sources, Volume 268, 5 December 2014
  • Zhijie Wu, Xikang Mao, Qin Zi, Rongrong Zhang, Tao Dou, Alex C.K. Yip, Mechanism and kinetics of sodium borohydride hydrolysis over crystalline nickel and nickel boride and amorphous nickel–boron nanoparticles, Journal of Power Sources, Volume 268, 5 December 2014
  • Ki Jae Kim, Yong Nam Jo, Won Jong Lee, T. Subburaj, K. Prasanna, Chang Woo Lee, Effects of inorganic salts on the morphological, structural, and electrochemical properties of prepared nickel-rich Li[Ni0.6Co0.2Mn0.2]O2, Journal of Power Sources, Volume 268, 5 December 2014
  • Jiaqin Yang, Wei Guo, Di Li, Caiying Wei, Hongmin Fan, Liyan Wu, Wenjun Zheng, Synthesis and electrochemical performances of novel hierarchical flower-like nickel sulfide with tunable number of composed nanoplates, Journal of Power Sources, Volume 268, 5 December 2014
  • Panpan Xu, Ke Ye, Dianxue Cao, Jichun Huang, Tong Liu, Kui Cheng, Jinling Yin, Guiling Wang, Facile synthesis of cobalt manganese oxides nanowires on nickel foam with superior electrochemical performance, Journal of Power Sources, Volume 268, 5 December 2014
  • Hee-Je Kim, Su-Weon Kim, Chandu V.V.M. Gopi, Soo-Kyoung Kim, S. Srinivasa Rao, Myeong-Soo Jeong, Improved performance of quantum dot-sensitized solar cells adopting a highly efficient cobalt sulfide/nickel sulfide composite thin film counter electrode, Journal of Power Sources, Volume 268, 5 December 2014
  • Tamara V. Basova, Roman G. Parkhomenko, Igor K. Igumenov, Aseel Hassan, Mahmut Durmus, Ayse Gül Gürek, Vefa Ahsen, Composites of liquid crystalline nickel phthalocyanine with gold nanoparticles: Liquid crystalline behaviour and optical properties, Dyes and Pigments, Volume 111, December 2014
  • Liangdong Feng, Yufu Zhu, Hongyan Ding, Chaoying Ni, Recent progress in nickel based materials for high performance pseudocapacitor electrodes, Journal of Power Sources, Volume 267, 1 December 2014
  • Wenna Huang, Lidan Xing, Yating Wang, Mengqing Xu, Weishan Li, Fengchao Xie, Shengan Xia, 4-(Trifluoromethyl)-benzonitrile: A novel electrolyte additive for lithium nickel manganese oxide cathode of high voltage lithium ion battery, Journal of Power Sources, Volume 267, 1 December 2014
  • Fang He, Zhibiao Hu, Kaiyu Liu, Shuirong Zhang, Hongtao Liu, Shangbin Sang, In situ fabrication of nickel aluminum-layered double hydroxide nanosheets/hollow carbon nanofibers composite as a novel electrode material for supercapacitors, Journal of Power Sources, Volume 267, 1 December 2014
  • Jinglin Zhang, Huidi Liu, Pu Shi, Yaoji Li, Langhuan Huang, Wenjie Mai, Shaozao Tan, Xiang Cai, Growth of nickel (111) plane: The key role in nickel for further improving the electrochemical property of hexagonal nickel hydroxide-nickel & reduced graphene oxide composite, Journal of Power Sources, Volume 267, 1 December 2014
  • Xuefei Gong, J.P. Cheng, Fu Liu, Li Zhang, Xiaobin Zhang, Nickel–Cobalt hydroxide microspheres electrodepositioned on nickel cobaltite nanowires grown on Ni foam for high-performance pseudocapacitors, Journal of Power Sources, Volume 267, 1 December 2014
  • Damien Connétable, Yu Wang, Döme Tanguy, Segregation of hydrogen to defects in nickel using first-principles calculations: The case of self-interstitials and cavities, Journal of Alloys and Compounds, Volume 614, 25 November 2014
  • E.R. Shaaban, M.A. Kaid, M.G.S. Ali, X-ray analysis and optical properties of nickel oxide thin films, Journal of Alloys and Compounds, Volume 613, 15 November 2014
  • Yan Qiao, Xiao-Shuai Wu, Chang Ming Li, Interfacial electron transfer of Shewanella putrefaciens enhanced by nanoflaky nickel oxide array in microbial fuel cells, Journal of Power Sources, Volume 266, 15 November 2014
  • Zhaobin Feng, Zhanhong Yang, Bin Yang, Zheng Zhang, Xiaoe Xie, The application of Co–Al-hydrotalcite as a novel additive of positive material for nickel–metal hydride secondary cells, Journal of Power Sources, Volume 266, 15 November 2014
  • J. Monnier, H. Chen, S. Joiret, J. Bourgon, M. Latroche, Identification of a new pseudo-binary hydroxide during calendar corrosion of (La, Mg)2Ni7-type hydrogen storage alloys for Nickel–Metal Hydride batteries, Journal of Power Sources, Volume 266, 15 November 2014
  • R. Gilles, D. Mukherji, H. Eckerlebe, L. Karge, P. Staron, P. Strunz, Th. Lippmann, Investigations of early stage precipitation in a tungsten-rich nickel-base superalloy using SAXS and SANS, Journal of Alloys and Compounds, Volume 612, 5 November 2014
  • T. Rojhirunsakool, A.R.P. Singh, S. Nag, J.Y. Hwang, J. Tiley, R. Banerjee, Temporal evolution of non-equilibrium ?' precipitates in a rapidly quenched nickel base superalloy, Intermetallics, Volume 54, November 2014