Iron Phosphide

FeP
CAS 12751-22-3


Product Product Code Order or Specifications
(5N) 99.999% Iron Phosphide Powder FE-P-05-P Contact American Elements
(5N) 99.999% Iron Phosphide Ingot FE-P-05-I Contact American Elements
(5N) 99.999% Iron Phosphide Chunk FE-P-05-CK Contact American Elements
(5N) 99.999% Iron Phosphide Lump FE-P-05-L Contact American Elements
(5N) 99.999% Iron Phosphide Sputtering Target FE-P-05-ST Contact American Elements
(5N) 99.999% Iron Phosphide Wafer FE-P-05-WSX Contact American Elements

CHEMICAL
IDENTIFIER
Formula CAS No. PubChem SID PubChem CID MDL No. EC No IUPAC Name Beilstein
Re. No.
SMILES
Identifier
InChI
Identifier
InChI
Key
FeP 12751-22-3 46234708 159456 N/A 235-798-1 iron(3+); phosphorus(3-) N/A [Fe]#P InChI=1S/Fe.P DPTATFGPDCLUTF-UHFFFAOYSA-N

PROPERTIES Compound Formula Mol. Wt. Appearance Density

Exact Mass

Monoisotopic Mass Charge MSDS
FeP 86.82 Gray, hexagonal needles or blue-gray powder N/A N/A 86.908707 N/A Safety Data Sheet

Phosphide IonIron Phosphide is a semiconductor used in high power, high frequency applications and in laser diodes. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement.

Iron (Fe) atomic and molecular weight, atomic number and elemental symbolIron (atomic symbol: Fe, atomic number: 26) is a Block D, Group 8, Period 4 element with an atomic weight of 55.845. The number of electrons in each of Iron's shells is 2, 8, 14, 2 and its electron configuration is [Ar] 3d6 4s2.Iron Bohr Model The iron atom has a radius of 126 pm and a Van der Waals radius of 194 pm. Iron was discovered by humans before 5000 BC. In its elemental form, iron has a lustrous grayish metallic appearance. Elemental Iron Iron is the fourth most common element in the Earth's crust and the most common element by mass forming the earth as a whole. Iron is rarely found as a free element, since it tends to oxidize easily; it is usually found in minerals such as magnetite , hematite, goethite, limonite, or siderite. Though pure iron is typically soft, the addition of carbon creates the alloy known as steel, which is significantly stronger. For more information on iron, including properties, safety data, research, and American Elements' catalog of iron products, visit the Iron Information Center.

Phosphorus(P) atomic and molecular weight, atomic number and elemental symbolPhosphorus Bohr ModelPhosphorus (atomic symbol: P, atomic number: 15) is a Block P, Group 15, Period 3 element. The number of electrons in each of Phosphorus's shells is 2, 8, 5 and its electronic configuration is [Ne] 3s2 3p3. The phosphorus atom has a radius of 110.5.pm and its Van der Waals radius is 180.pm. Phosphorus is a highly-reactive non-metallic element (sometimes considered a metalloid) with two primary allotropes, white phosphorus and red phosphorus; its black flaky appearance is similar to graphitic carbon. Compound forms of phosphorus include phosphates and phosphides. Phosphorous was first recognized as an element by Hennig Brand in 1669; its name (phosphorus mirabilis, or "bearer of light") was inspired from the brilliant glow emitted by its distillation. For more information on phosphorus, including properties, safety data, research, and American Elements' catalog of phosphorus products, visit the Phosphorus Information Center.


HEALTH, SAFETY & TRANSPORTATION INFORMATION
Material Safety Data Sheet MSDS
Signal Word N/A
Hazard Statements N/A
Hazard Codes N/A
Risk Codes N/A
Safety Precautions N/A
RTECS Number N/A
Transport Information N/A
WGK Germany N/A
Globally Harmonized System of
Classification and Labelling (GHS)
N/A        

IRON PHOSPHIDE SYNONYMS
ferric phosphorus(-3) anion, Ferrophosphide, Triiron phosphide

CUSTOMERS FOR IRON PHOSPHIDE HAVE ALSO LOOKED AT
Show Me MORE Forms of Iron

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis





German   Korean   French   Japanese   Spanish   Chinese (Simplified)   Portuguese   Russian   Chinese (Taiwan)  Italian   Turkish   Polish   Dutch   Czech   Swedish   Hungarian   Danish   Hebrew

Production Catalog Available in 36 Countries & Languages


Recent Research & Development for Iron

  • Synthesis and characterization of new derivatives of alginic acid and evaluation of their iron(III)-crosslinked beads as potential controlled release matrices. Abulateefeh SR, Khanfar MA, Al Bakain RZ, Taha MO. Pharm Dev Technol. 2014
  • Iron oxide nanoparticle agglomeration influences dose rates and modulates oxidative stress-mediated dose-response profiles in vitro. Sharma G, Kodali V, Gaffrey M, Wang W, Minard KR, Karin NJ, Teeguarden JG, Thrall BD. Nanotoxicology. 2014
  • Physicochemical and structural characterization of iron-sucrose formulations: a comparative study. Barot BS, Parejiya PB, Mehta DM, Shelat PK, Shah GB. Pharm Dev Technol. 2014
  • A photonic crystal biosensor assay for ferritin utilizing iron-oxide nanoparticles. Peterson RD, Cunningham BT, Andrade JE. Biosens Bioelectron. 2014
  • The interaction of DNA with phytoferritin during iron oxidation. Yang R, Yang S, Liao X, Deng J, Zhao G. Food Chem. 2014
  • Evaluation of different methods for determination of the iron saturation level in bovine lactoferrin. Bokkhim H, Tran T, Bansal N, Grøndahl L, Bhandari B. Food Chem. 2014
  • Colloidal iron(III) pyrophosphate particles. Rossi L, Velikov KP, Philipse AP. Food Chem. 2014
  • Hyperspectral fluorescence imaging for cellular iron mapping in the in vitro model of Parkinson's disease. Oh ES, Heo C, Kim JS, Suh M, Lee YH, Kim JM. J Biomed Opt. 2014
  • Hyaluronic acid-modified hydrothermally synthesized iron oxide nanoparticles for targeted tumor MR imaging. Li J, He Y, Sun W, Luo Y, Cai H, Pan Y, Shen M, Xia J, Shi X. Biomaterials. 2014
  • Reducing iron in the brain: a novel pharmacologic mechanism of huperzine A in the treatment of Alzheimer's disease. Huang XT, Qian ZM, He X, Gong Q, Wu KC, Jiang LR, Lu LN, Zhu ZJ, Zhang HY, Yung WH, Ke Y. Neurobiol Aging. 2014
  • Cation exchange resin immobilized bimetallic nickel-iron nanoparticles to facilitate their application in pollutants degradation. Ni SQ, Yang N. J Colloid Interface Sci. 2014
  • Phenomenological study and application of the combined influence of iron concentration and irradiance on the photo-Fenton process to remove micropollutants. Carra I, García Sánchez JL, Casas López JL, Malato S, Sánchez Pérez JA. Sci Total Environ. 2014.
  • Pharmaceutical characterization and thermodynamic stability assessment of a colloidal iron drug product: Iron sucrose. Shah RB, Yang Y, Khan MA, Raw A, Yu LX, Faustino PJ. Int J Pharm. 2014.
  • Oxidation of Orange G by persulfate activated by Fe(II), Fe(III) and zero valent iron (ZVI). Rodriguez S, Vasquez L, Costa D, Romero A, Santos A. Chemosphere. 2014
  • Iron status as a covariate in methylmercury-associated neurotoxicity risk. Fonseca Mde F, De Souza Hacon S, Grandjean P, Choi AL, Bastos WR. Chemosphere. 2014
  • Diminution of 2,3,5-triphenyltetrazolium chloride toxicity on Listeria monocytogenes growth by iron source addition to the culture medium. Junillon T, Flandrois JP. Food Microbiol. 2014
  • Iron deficiency anaemia and cataracts in a patient with haemochromatosis. Peiffer KH, Niemeyer M, Buslau A, Kohnen T, Muckenthaler MU, Zeuzem S, Sarrazin C. Gut. 2014
  • Influence of Iron Deficiency Anemia on Hemoglobin A1C Levels in Diabetic Individuals with Controlled Plasma Glucose Levels. Christy AL, Manjrekar PA, Babu RP, Hegde A, M S R. Iran Biomed J. 2014
  • Antioxidant enzymes and oxidative stress in the erythrocytes of iron deficiency anemic patients supplemented with vitamins. Madhikarmi NL, Murthy KR. Iran Biomed J. 2014
  • Assessing carbon-encapsulated iron nanoparticles cytotoxicity in Lewis lung carcinoma cells. Grudzinski IP, Bystrzejewski M, Cywinska MA, Kosmider A, Poplawska M, Cieszanowski A, Fijalek Z, Ostrowska A, Parzonko A. J Appl Toxicol. 2014

Recent Research & Development for Phosphides

  • The Stannylphosphide Anion Reagent Sodium Bis(triphenylstannyl) Phosphide: Synthesis, Structural Characterization, and Reactions with Indium, Tin, and Gold Electrophiles. Cummins CC, Huang C, Miller TJ, Reintinger MW, Stauber JM, Tannou I, Tofan D, Toubaei A, Velian A, Wu G. Inorg Chem. 2014.
  • Hexanuclear Gold(I) Phosphide Complexes as Platforms for Multiple Redox-Active Ferrocenyl Units. Lee TK, Cheng EC, Zhu N, Yam VW. Chemistry. 2013 Dec.
  • Easily-prepared dinickel phosphide (Ni2P) nanoparticles as an efficient and robust electrocatalyst for hydrogen evolution. Feng L, Vrubel H, Bensimon M, Hu X. Phys Chem Chem Phys. 2014 Feb.
  • Abdominal imaging in zinc phosphide poisoning. Hassanian-Moghaddam H, Shahnazi M, Zamani N, Bahrami-Motlagh H. Emerg Radiol 2014.
  • Gas phase catalytic hydrodechlorination of chlorobenzene over cobalt phosphide catalysts with different P contents. J Hazard Mater. 2013 | first author:Cecilia JA
  • Successful treatment of cardiogenic shock with an intra-aortic balloon pump following aluminium phosphide poisoning. Mehrpour O, Amouzeshi A, Dadpour B, Oghabian Z, Zamani N, Amini S, Hoffman RS. Arh Hig Rada Toksikol. 2014 Jan.
  • Aluminium phosphide-induced leukopenia. Ntelios D, Mandros C, Potolidis E, Fanourgiakis P. BMJ Case Rep. 2013 Oct.
  • 25th anniversary article: exploring nanoscaled matter from speciation to phase diagrams: metal phosphide nanoparticles as a case of study. Carenco S, Portehault D, Boissière C, Mézailles N, Sanchez C. Adv Mater. 2014 Jan.
  • Pulse-reverse electrodeposition of transparent nickel phosphide film with porous nanospheres as a cost-effective counter electrode for dye-sensitized solar cells. Wu MS, Wu JF. Chem Commun (Camb). 2013 Oct.
  • 25th Anniversary Article: Exploring Nanoscaled Matter from Speciation to Phase Diagrams: Metal Phosphide Nanoparticles as a Case of Study. Carenco S, Portehault D, Boissière C, Mézailles N, Sanchez C. Adv Mater. 2013 Dec.
  • A Common Misconception in the Management of Aluminium Phosphide Poisoning. Arh Hig Rada Toksikol. 2013 | first author:Marashi SM.
  • Pulse-reverse electrodeposition of transparent nickel phosphide film with porous nanospheres as a cost-effective counter electrode for dye-sensitized solar cells. Wu MS, Wu JF. Chem Commun (Camb). 2013
  • Solution-Processed Zinc Phosphide (α-Zn(3)P(2)) Colloidal Semiconducting Nanocrystals for Thin Film Photovoltaic Applications. ACS Nano. 2013 create date:2013/08/21 | first author:Luber EJ
  • From a Zwitterionic Phosphasilene to Base Stabilized Silyliumylidene-Phosphide and Bis(silylene) Complexes. Breit NC, Szilvási T, Suzuki T, Gallego D, Inoue S. J Am Chem Soc. 2013 Nov.
  • Structural transitions at the nanoscale: the example of palladium phosphides synthesized from white phosphorus. Carenco S, Hu Y, Florea I, Ersen O, Boissière C, Sanchez C, Mézailles N. Dalton Trans. 2013 Aug.
  • From a Zwitterionic Phosphasilene to Base Stabilized Silyliumylidene-Phosphide and Bis(silylene) Complexes. Breit NC, Szilvási T, Suzuki T, Gallego D, Inoue S. J Am Chem Soc. 2013 Oct.
  • Ingestion of gallium phosphide" nanowires has no adverse effect on Drosophila tissue function. Adolfsson K, Schneider M, Hammarin G, Häcker U, Prinz CN. Nanotechnology.
  • Is the Use of Cardioactive Steroids Appropriate in Managing Aluminium Phosphide Poisoning-Induced Heart Failure? Arh Hig Rada Toksikol. 2013 create date:2013/10/03 | first author:Marashi SM
  • Semiconducting and plasmonic copper phosphide platelets. Manna G, Bose R, Pradhan N. Angew Chem Int Ed Engl. 2013.
  • Use of continuous renal replacement therapy in acute aluminum phosphide poisoning: a novel therapy. Ren Fail. 2013 | first author:Nasa P
  • Nanoscaled Metal Borides and Phosphides: Recent Developments and Perspectives. Carenco S, Portehault D, Boissière C, Mézailles N, Sanchez C. Chem Rev. 2013 Jun.