Skip to Page Content

Potassium bis(oxalato)Cuprate(II) Hydrate

K2[Cu(C2O4)2] • xH2O


Product Product Code Request Quote
(2N) 99% Potassium bis(oxalato)Cuprate(II) Hydrate KCU-OM-02-HYD Request Quote
(3N) 99.9% Potassium bis(oxalato)Cuprate(II) Hydrate KCU-OM-03-HYD Request Quote
(4N) 99.99% Potassium bis(oxalato)Cuprate(II) Hydrate KCU-OM-04-HYD Request Quote
(5N) 99.999% Potassium bis(oxalato)Cuprate(II) Hydrate KCU-OM-05-HYD Request Quote

CHEMICAL
IDENTIFIER
Formula PubChem SID PubChem CID MDL No. IUPAC Name SMILES
Identifier
InChI
Identifier
InChI
Key
K2[Cu(C2O4)2] • xH2O 162247105 16217290 MFCD04974083 dipotassium; copper;2-hydroxy
-2-oxoacetate; hydrate
C(=O)(C(=O)[O-])O
.C(=O)(C(=O)[O-])
O.O.[K+].[K+].[Cu]
InChI=1S/2C2H2
O4.Cu.2K.H2O/c
2*3-1(4)2(5)6;;;;/h
2*(H,3,4)(H,5,6);;;
;1H2/q;;;2*+1;/p-2
KDGLUPQBWQFUSG-UHFFFAOYSA-L

PROPERTIES Compound Formula Mol. Wt. Appearance Melting Point Boiling Point Density Exact Mass Monoisotopic Mass Charge MSDS
C4H4CuK2O9 337.81 Powder 260 °C N/A N/A 336.84 482.705321 0 Safety Data Sheet

Potassium bis(oxalato)Cuprate(II) Hydrate is generally immediately available in most volumes. High purity, submicron and nanopowder forms may be considered. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement.

Potassium (K) atomic and molecular weight, atomic number and elemental symbol Elemental PotassiumPotassium (atomic symbol: K, atomic number: 19) is a Block S, Group 1, Period 4 element with an atomic weight of 39.0983. The number of electrons in each of Potassium's shells is [2, 8, 8, 1] and its electron configuration is [Ar] 4s1. The potassium atom has a radius of 227.2 pm and a Van der Waals radius of 275 pm. Potassium was discovered and first isolated by Sir Humphrey Davy in 1807. Potassium is the seventh most abundant element on earth. It is one of the most reactive and electropositive of all metals and rapidly oxidizes. Potassium Bohr Model As with other alkali metals, potassium decomposes in water with the evolution of hydrogen; because of its reacts violently with water, it only occurs in nature in ionic salts. In its elemental form, potassium has a silvery gray metallic appearance, but its compounds (such as potassium hydroxide) are more frequently used in industrial and chemical applications. The origin of the element's name comes from the English word 'potash,' meaning pot ashes, and the Arabic word qali, which means alkali. The symbol K originates from the Latin word kalium. For more information on potassium, including properties, safety data, research, and American Elements' catalog of potassium products, visit the Potassium element page.

Copper Bohr ModelCopper (Cu) atomic and molecular weight, atomic number and elemental symbolCopper (atomic symbol: Cu, atomic number: 29) is a Block D, Group 11, Period 4 element with an atomic weight of 63.546. The number of electrons in each of copper's shells is 2, 8, 18, 1 and its electron configuration is [Ar] 3d10 4s1. The copper atom has a radius of 128 pm and a Van der Waals radius of 186 pm. Copper was first discovered by Early Man prior to 9000 BC. In its elemental form, copper has a red-orange metallic luster appearance. Elemental Copper Of all pure metals, only silver has a higher electrical conductivity.The origin of the word copper comes from the Latin word 'cuprium' which translates as "metal of Cyprus." Cyprus, a Mediterranean island, was known as an ancient source of mined copper. For more information on copper, including properties, safety data, research, and American Elements' catalog of copper products, visit the Copper element page.


HEALTH, SAFETY & TRANSPORTATION INFORMATION
Material Safety Data Sheet MSDS
Signal Word Warning
Hazard Statements H302-H312
Hazard Codes Xn
Risk Codes 21/22
Safety Precautions 24/25
WGK Germany 3
Globally Harmonized System of
Classification and Labelling (GHS)
Exclamation Mark-Acute Toxicity        

CUSTOMERS FOR POTASSIUM BIS(OXALATO)CUPRATE(II) HYDRATE HAVE ALSO LOOKED AT
Potassium 2-Ethylhexanoate Potassium Oxide Potassium Chloride Potassium Acetate Potassium Wire
Potassium Nitrate Potassium Metal Potassium Oxide Pellets Potassium Sodium Alloy Potassium Sputtering Target
Potassium Oxide Nanopowder Potassium Oxide Powder Potassium Foil Silver Potassium Cyanide Potassium Pellets
Show Me MORE Forms of Potassium

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis

Recent Research & Development for Potassium

  • Laboratory Studies of Potassium-Halide-Induced High-Temperature Corrosion of Superheater Steels. Part 1: Exposures in Dry Air. Hao Wu, Patrik Yrjas, and Mikko Hupa. Energy Fuels: January 23, 2015
  • Iso-Selective Ring-Opening Polymerization of rac-Lactide Catalyzed by Crown Ether Complexes of Sodium and Potassium Naphthalenolates. Jiao Xiong, Jinjin Zhang, Yangyang Sun, Zhongran Dai, Xiaobo Pan, and Jincai Wu. Inorg. Chem.: January 17, 2015
  • Impedance Analysis and Conduction Mechanisms of Lead Free Potassium Sodium Niobate (KNN) Single Crystals and Polycrystals: A Comparison Study. Muhammad Asif Rafiq, Maria Elisabete Costa, Alexander Tkach, and Paula Maria Vilarinho. Crystal Growth & Design: December 16, 2014
  • Measurement and Correlation of the Solubility of Penicillin V Potassium in Ethanol + Water and 1-Butyl Alcohol + Water Systems. Tingting Wei, Chen Wang, Shichao Du, Songgu Wu, Jianyu Li, and Junbo Gong. J. Chem. Eng. Data: December 15, 2014
  • Potassium-Promoted Alumina Adsorbent from K2CO3 Coagulated Alumina Sol for Warm Gas Carbon Dioxide Separation. Shuang Li, Yixiang Shi, and Ningsheng Cai. ACS Sustainable Chem. Eng.: December 8, 2014
  • Effect of Dissolution and Refaceting on Growth Rate Dispersion of Sodium Chlorate and Potassium Dihydrogen Phosphate Crystals. M. M. Mitrovi?, A. A. Žeki, B. M. Misailovi, and B. Z. Radiša. Ind. Eng. Chem. Res.: November 25, 2014
  • Energy and Exergy Analyses of an Integrated Gasification Combined Cycle Power Plant with CO2 Capture Using Hot Potassium Carbonate Solvent. Sheng Li, Hongguang Jin, Lin Gao, Kathryn Anne Mumford, Kathryn Smith, and Geoff Stevens. Environ. Sci. Technol.: November 12, 2014
  • Face-Specific Growth and Dissolution Kinetics of Potassium Dihydrogen Phosphate Crystals from Batch Crystallization Experiments. H. Eisenschmidt, A. Voigt, and K. Sundmacher. Crystal Growth & Design: November 11, 2014
  • Highly Iso-Selective and Active Catalysts of Sodium and Potassium Monophenoxides Capped by a Crown Ether for the Ring-Opening Polymerization of rac-Lactide. Jinjin Zhang, Jiao Xiong, Yangyang Sun, Ning Tang, and Jincai Wu. Macromolecules: November 4, 2014
  • Suzuki–Miyaura Cross-Coupling of Brominated 2,1-Borazaronaphthalenes with Potassium Alkenyltrifluoroborates. Gary A. Molander, Steven R. Wisniewski, and Elham Etemadi-Davan. J. Org. Chem.: October 30, 2014

Recent Research & Development for Copper

  • The Environmental Legacy of Copper Metallurgy and Mongol Silver Smelting Recorded in Yunnan Lake Sediments. Aubrey L. Hillman, Mark B. Abbott, JunQing Yu, Daniel J. Bain, and TzeHuey Chiou-Peng. Environ. Sci. Technol.: February 16, 2015
  • Highly dispersed copper oxide clusters as active species in copper-ceria catalyst for preferential oxidation of carbon monoxide. Wei-Wei Wang, Pei-Pei Du, Shi-Hui Zou, Huan-Yu He, Rui-Xing Wang, Zhao Jin, Shuo Shi, Yuying Huang, Rui Si, Qi-Sheng Song, Chun-Jiang Jia, and Chun-Hua Yan. ACS Catal.: February 13, 2015
  • NO Decomposition Activated by Preadsorption of O2 onto Copper Cluster Anions. Shinichi Hirabayashi and Masahiko Ichihashi. J. Phys. Chem. C: February 12, 2015
  • Synthesis of Vinyl Trifluoromethyl Thioethers via Copper-Mediated Trifluoromethylthiolation of Vinyl Bromides. Yangjie Huang, Jianping Ding, Chuyi Wu, Huidong Zheng, and Zhiqiang Weng. J. Org. Chem.: 42047
  • Renal Clearance and Degradation of Glutathione-coated Copper Nanoparticles. Jie Zheng, Shengyang Yang, Shasha Sun, Chen Zhou, Guiyang Hao, Jinbin Liu, Saleh Ramezani, Mengxiao Yu, and Xiankai Sun. Bioconjugate Chem.: February 12, 2015
  • Copper-Catalyzed N-Cyanation of Sulfoximines by AIBN. Fan Teng, Jin-Tao Yu, Zhou Zhou, Haoke Chu, and Jiang Cheng. J. Org. Chem.: 42045
  • Aggregation, dissolution and transformation of copper nanoparticles in natural waters. Jon Robert Conway, Adeyemi S. Adeleye, Jorge L Gardea-Torresdey, and Arturo A. Keller. Environ. Sci. Technol.: February 9, 2015
  • Lewis Acid-Induced Change from Four- to Two-Electron Reduction of Dioxygen Catalyzed by Copper Complexes Using Scandium Triflate. Saya Kakuda, Clarence Rolle, Kei Ohkubo, Maxime A. Siegler, Kenneth D. Karlin, and Shunichi Fukuzumi. J. Am. Chem. Soc.: February 7, 2015
  • Tris(2,2'-azobispyridine) Complexes of Copper(II): X-ray Structures, Reactivities, and the Radical Nonradical Bis(ligand) Analogues. Suvendu Maity, Suman Kundu, Thomas Weyhermüller, and Prasanta Ghosh. Inorg. Chem.: February 4, 2015
  • Proton Conduction and Long-Range Ferrimagnetic Ordering in Two Isostructural Copper(II) Mesoxalate Metal–Organic Frameworks. Beatriz Gil-Hernández, Stanislav Savvin, Gamall Makhloufi, Pedro Núñez, Christoph Janiak, and Joaquín Sanchiz. Inorg. Chem.: February 4, 2015