Skip to Main Content

About Platinum

Platinum Bohr

Pre-columbian natives of the Americas have produced items made from gold-platinum alloys for 2,000 years, but Spanish explorers first brought platinum to Europe in the 18th century in the form they called platina, the native form of the metal found in South America. The name was derived from plata, the Spanish word for silver, and was eventually used in the official name of the element. Antonio de Ulloa is credited with the discovery of platina in 1735, but was primarily an explorer and had little to do with investigation of the metal after submitting a report that included descriptions of the metal in 1746. Instead, a range of chemists across Europe experimented with the newly discovered metal.

18th century chemists recognized the potential value of the hard and corrosion resistant metal, but struggled to produce malleable platinum from the ore. In 1751, Swedish scientist Henrik Scheffer discovered that grains of the platinum ore could be fused into malleable platinum by heating them in the presence of arsenic, and subsequent refinement of this process enabled the production of the first european products made from the metal. Over the next fifty years, a variety of processes were developed to produce malleable platinum metal from ore, but all of them suffered from some inconsistencies in the final material produced and required laborious or costly steps, limiting the production of the metal. During this period, platinum was used primarily for the production of ornamental pieces and laboratory ware.

In 1802, two English chemists, Smithson Tennant and William Hyde Wollaston, worked together to come up with a more efficient way to produce workable platinum. In the process, they discovered what had been hindering platinum purification all along: platinum ore actually contained trace amounts of several other elements previously unknown to science, and varying amounts of contamination with these elements remaining after extraction of the metal from the ore led to variations in the properties of the “platinum” produced. This new understanding facilitated the development of more reliable and efficient methods for processing platinum ore, which was followed by a boom in availability and use of the metal.

In 1817, Humphry Davy, a chemist who was interested in producing a lamp that could be safely used in coal mines, stumbled upon the phenomenon of heterogeneous catalytic oxidation--the coal gas he tested would burn without a flame and at a lower than usual temperature only where it came in contact with platinum or palladium metal wire. Having solved his problem, Davy then moved on to other pursuits, but other chemists were fascinated, and soon many reactions where platinum could serve as a catalyst were discovered. By the beginning of the 20th century, platinum catalysts were widely used in the industrial production of sulfuric and nitric acid.

Today, platinum catalysts are essential for catalytic converters, which reduce toxic emissions by automobiles, for petroleum processing, and for a wide range of organic synthesis applications. The 2007 Nobel Prize in Chemistry was awarded to Gerhard Ertl for the research on catalytic oxidation of carbon monoxide, the chemistry that underlies the function of catalytic converters. Additionally, two other Chemistry Nobel Prize winners investigated platinum catalysts in their research, though each was ultimately awarded the prize for processes that used other metals as catalysts. Paul Sabatier’s award in 1912 recognized him for his work on hydrogenation reactions for which he ultimately found nickel to be more effective than platinum. The first successful production of ammonia from gaseous nitrogen was performed in 1881 using a platinum catalyst, and Fritz Haber’s research into improving this process ultimately resulted in the Haber process for which he won the 1918 Nobel Prize. Haber’s final process as used in industry used iron-based catalysts rather than platinum group metals, but his research would not have been possible without prior work using platinum.

While researchers investigated the chemical properties of platinum in the 19th century, the metal was also growing in popularity for use in jewelry. Platinum is in some ways a better metal for jewelry than either silver or gold, as it is harder than either and does not tarnish like silver. Once several prominent jewelers started using the metal in the late 1800’s, platinum rose rapidly in popularity, becoming particularly fashionable for the setting of colorless stones. This continued until 1940, when platinum use was restricted to industrial production of chemicals needed in the war effort. Platinum was replaced by white gold due to these restrictions, but has returned to popularity in recent years.

Platinum and platinum alloys are used in a wide range of settings where chemical inertness or wear resistance are important, including medical and laboratory instruments, electrical contacts, spark plugs, and turbine engines. A platinum-iridium alloy was also used to produce the international prototype kilogram and meter in the late 19th century; of the two only the kilogram remains in official use. Finally, organometallic platinum complexes have been investigated for use in cancer treatment.

Like other platinum group metals, platinum is most often obtained for commercial use as a byproduct from nickel and copper mining and processing, but can also be obtained from rare platinum-rich ores and alluvial deposits of native platinum.

+ Open All
- Close All
Compounds

Platinum is used in laboratory and dentistry equipment, jewelry, electrical contacts and electrodes, and catalytic converters. It is highly corrosion resistant- the metal does not oxidize in air at any temperature. Organoplatinum compounds have been used as pharmaceutical treatments for certain cancers. High Purity (99.999%) Platinum Oxide (PtO2) PowderPlatinum is available as metal and compounds with purities from 99% to 99.999% (ACS grade to ultra-high purity). High Purity (99.999%) Platinum (Pt) Sputtering TargetElemental or metallic forms include platinum pellets, rod, wire and granules for evaporation source material purposes. Platinum nanoparticles and nanopowders are also available. Platinum oxide is available in powder and dense pellet form for such uses as optical coating and thin film applications. Oxides tend to be insoluble. Potassium fluoride is another insoluble form for uses in which oxygen is undesirable such as metallurgy, chemical and physical vapor deposition and in some optical coatings. Platinum is also available in soluble forms including chlorides, nitrates and acetates. These compounds can be manufactured as solutions at specified stoichiometries.

Platinum Properties

Platinum(Pt) atomic and molecular weight, atomic number and elemental symbolPlatinum is a Block D, Group 10, Period 6 element. The number of electrons in each of platinum's shells is 2, 8, 18, 32, 17, 1 and its electron configuration is [Xe] 4f14 5d9 6s1. The platinum atom has a radius of 137.3.pm and its Van der Waals radius is 175.pm. Platinum Bohr ModelElemental PlatinumIn its elemental form, CAS 7440-06-4, platinum has a grayish white appearance. Platinum is a member of the platinum group of metals and the group 10 of the periodic table. It is generally non-reactive, even at high temperatures. It is one of the rarest elements in the earth's crust, occurring at a concentration of only 0.005 ppm. Platinum is found uncombined as native platinum and alloyed with iridium as platiniridium. Platinum was first discovered and isolated by Antonio de Ulloa in 1735. The origin of the name comes from the Spanish word platina meaning silver.

Symbol: Pt
Atomic Number: 78
Atomic Weight: 195.084
Element Category: transition metal
Group, Period, Block: 10, 6, d
Color: silvery-white
Other Names: N/A
Melting Point: 1768 °C, 3215 °F, 2041 K
Boiling Point: 3825 °C, 6917 °F, 4098 K
Density: 21.45 g·cm3
Liquid Density @ Melting Point: 19.77 g·cm3
Density @ 20°C: 21.45 g/cm3
Density of Solid: 21090 kg·m3
Specific Heat: 0.13 (kJ/kg K)
Superconductivity Temperature: N/A
Triple Point: 2045 K, 2.0 × 10 4 kPa 
Critical Point: N/A
Heat of Fusion (kJ·mol-1): 19.7
Heat of Vaporization (kJ·mol-1): 469
Heat of Atomization (kJ·mol-1): 564.42
Thermal Conductivity: 71.6 W·m-1·K-1
Thermal Expansion: (25 °C) 8.8 µm·m-1·K-1
Electrical Resistivity: (20 °C) 105 nΩ·m
Tensile Strength: 125-240 MPa
Molar Heat Capacity: 25.86 J·mol-1·K-1
Young's Modulus: 168 GPa
Shear Modulus: 61 GPa
Bulk Modulus: 230 GPa
Poisson Ratio: 0.38
Mohs Hardness: 4–4.5
Vickers Hardness: 549 MPa
Brinell Hardness: 392 MPa
Speed of Sound: (r.t.) 2800 m·s-1
Pauling Electronegativity: 2.28
Sanderson Electronegativity: N/A
Allred Rochow Electronegativity: 1.44
Mulliken-Jaffe Electronegativity: N/A
Allen Electronegativity: N/A
Pauling Electropositivity: 1.72
Reflectivity (%): 73
Refractive Index: N/A
Electrons: 78
Protons: 78
Neutrons: 117
Electron Configuration: [Xe] 4f14 5d9 6s1
Atomic Radius: 139 pm
Atomic Radius,
non-bonded (Å):
2.13
Covalent Radius: 136±5 pm
Covalent Radius (Å): 1.3
Van der Waals Radius: 175 pm
Oxidation States: 6, 5, 4, 3, 2, 1, ?1, ?2, ?3 (mildly basic oxide)
Phase: Solid
Crystal Structure: face-centered cubic
Magnetic Ordering: paramagnetic
Electron Affinity (kJ·mol-1) 205.321
1st Ionization Energy: 864.39 kJ·mol-1
2nd Ionization Energy: 1791.07 kJ·mol-1
3rd Ionization Energy: N/A
CAS Number: 7440-06-4
EC Number: 231-116-1
MDL Number: MFCD00011179
Beilstein Number: N/A
SMILES Identifier: [Pt]
InChI Identifier: InChI=1S/Pt
InChI Key: BASFCYQUMIYNBI-UHFFFAOYSA-N
PubChem CID: 23939
ChemSpider ID: 22381
Earth - Total: 1.67 ppm
Mercury - Total: 1.29 ppm
Venus - Total: 1.76 ppm
Earth - Seawater (Oceans), ppb by weight: N/A
Earth - Seawater (Oceans), ppb by atoms: N/A
Earth -  Crust (Crustal Rocks), ppb by weight: 37
Earth -  Crust (Crustal Rocks), ppb by atoms: 4
Sun - Total, ppb by weight: 9
Sun - Total, ppb by atoms: 0.06
Stream, ppb by weight: N/A
Stream, ppb by atoms: N/A
Meterorite (Carbonaceous), ppb by weight: 1000
Meterorite (Carbonaceous), ppb by atoms: 100
Typical Human Body, ppb by weight: N/A
Typical Human Body, ppb by atom: N/A
Universe, ppb by weight: 5
Universe, ppb by atom: 0.03
Discovered By: Antonio de Ulloa
Discovery Date: 1735
First Isolation: Antonio de Ulloa (1735)

Health, Safety & Transportation Information for Platinum

Platinum is not toxic in its elemental form; however, safety data for Platinum and its compounds can vary widely depending on the form. For potential hazard information, toxicity, and road, sea and air transportation limitations, such as DOT Hazard Class, DOT Number, EU Number, NFPA Health rating and RTECS Class, please see the specific material or compound referenced in the Products tab. The below information applies to elemental (metallic) Platinum.

Safety Data
Material Safety Data Sheet MSDS
Signal Word N/A
Hazard Statements N/A
Hazard Codes N/A
Risk Codes N/A
Safety Precautions N/A
RTECS Number TP2160000
Transport Information N/A
WGK Germany nwg
Globally Harmonized System of
Classification and Labelling (GHS)
N/A

Platinum Isotopes

Natural platinum (Pt) has five stable isotopes (192Pt, 194Pt, 195Pt, 196Pt, 198Pt) and one radioisotope with a very long half life (190Pt).

Nuclide Isotopic Mass Half-Life Mode of Decay Nuclear Spin Magnetic Moment Binding Energy (MeV) Natural Abundance
(% by atom)
166Pt 165.99486(54)# 300(100) µs Unknown 0+ N/A 1262.86 -
167Pt 166.99298(44)# 700(200) µs Unknown 7/2-# N/A 1270.94 -
168Pt 167.98815(22) 2.00(18) ms α to 164Os; β+ to 168Ir 0+ N/A 1288.33 -
169Pt 168.98672(22)# 3.7(15) ms α to 165Os; β+ to 169Ir 3/2-# N/A 1296.41 -
170Pt 169.982495(20) 14.0(2) ms α to 166Os; β+ to 170Ir 0+ N/A 1304.49 -
171Pt 170.98124(9) 51(2) ms α to 167Os; β+ to 171Ir 3/2-# N/A 1312.57 -
172Pt 171.977347(14) 98.4(24) ms α to 168Os; β+ to 172Ir 0+ N/A 1329.97 -
173Pt 172.97644(6) 365(7) ms α to 169Os; β+ to 173Ir 5/2-# N/A 1338.04 -
174Pt 173.972819(13) 0.889(17) s α to 170Os; β+ to 174Ir 0+ N/A 1346.12 -
175Pt 174.972421(20) 2.53(6) s α to 171Os; β+ to 175Ir 5/2-# N/A 1354.2 -
176Pt 175.968945(15) 6.33(15) s β+ to 176Ir; α to 172Os 0+ N/A 1371.6 -
177Pt 176.968469(16) 10.6(4) s β+ to 177Ir; α to 173Os 5/2- N/A 1379.68 -
178Pt 177.965649(12) 21.1(6) s β+ to 178Ir; α to 174Os 0+ N/A 1387.75 -
179Pt 178.965363(10) 21.2(4) s β+ to 179Ir; α to 175Os 1/2- N/A 1395.83 -
180Pt 179.963031(12) 56(2) s β+ to 180Ir; α to 176Os 0+ N/A 1403.91 -
181Pt 180.963097(16) 52.0(22) s β+ to 181Ir; α to 177Os 1/2- N/A 1411.99 -
182Pt 181.961171(17) 2.2(1) min β+ to 182Ir; α to 178Os 0+ N/A 1420.07 -
183Pt 182.961597(17) 6.5(10) min β+ to 183Ir; α to 179Os 1/2- N/A 1428.15 -
184Pt 183.959922(19) 17.3(2) min β+ to 184Ir; α to 180Os 0+ N/A 1445.54 -
185Pt 184.96062(4) 70.9(24) min β+ to 185Ir; α to 181Os (9/2+) N/A 1444.31 -
186Pt 185.959351(23) 2.08(5) h β+ to 186Ir; α to 182Os 0+ N/A 1461.7 -
187Pt 186.96059(3) 2.35(3) h β+ to 187Ir 3/2- N/A 1460.46 -
188Pt 187.959395(6) 10.2(3) d EC to 188Ir; α to 184Os 0+ N/A 1477.86 -
189Pt 188.960834(12) 10.87(12) h β+ to 189Ir 3/2- N/A 1476.62 -
190Pt 189.959932(6) 6.5(3)E+11 y α to 186Os 0+ N/A 1494.01 0.014
191Pt 190.961677(5) 2.862(7) d EC to 191Ir 3/2- 0.5 1492.78 -
192Pt 191.9610380(27) Observationally Stable - 0+ N/A 1500.86 0.782
193Pt 192.9629874(18) 50(6) y EC to 193Ir 1/2- N/A 1508.93 -
194Pt 193.9626803(9) Observationally Stable - 0+ N/A 1517.01 32.967
195Pt 194.9647911(9) Observationally Stable - 1/2- 0.6095 1525.09 33.832
196Pt 195.9649515(9) Observationally Stable - 0+ N/A 1533.17 25.242
197Pt 196.9673402(9) 19.8915(19) h β- to 197Au 1/2- 0.51 1541.25 -
198Pt 197.967893(3) Observationally Stable - 0+ N/A 1549.33 7.163
199Pt 198.970593(3) 30.80(21) min β- to 199Au 5/2- N/A 1548.09 -
200Pt 199.971441(22) 12.5(3) h β- to 200Au 0+ N/A 1556.17 -
201Pt 200.97451(5) 2.5(1) min β- to 201Au (5/2-) N/A 1564.25 -
202Pt 201.97574(32)# 44(15) h β- to 202Au 0+ N/A 1572.33 -
Platinum Elemental Symbol

Recent Research & Development for Platinum

  • Platinum Multicubes Prepared by Ni2+ -Mediated Shape Evolution Exhibit High Electrocatalytic Activity for Oxygen Reduction. Ma L, Wang C, Xia BY, Mao K, He J, Wu X, Xiong Y, Lou XW. Angew Chem Int Ed Engl. 2015 Mar 10.
  • The Efficacy and Safety of Platinum/Vinorelbine as more than Second-line Chemotherapy for Advanced Non-small-cell Lung Cancer. Song IC, Lee HJ, Yang YJ, Choi YS, Ryu HW, Lee MW, Moon JY, Jo DY, Kim S, Yun HJ. Cancer Res Treat. 2015 Mar 2.
  • Importance of platinum particle size for complete oxidation of toluene over Pt/ZSM-5 catalysts. Chen C, Chen F, Zhang L, Pan S, Bian C, Zheng X, Meng X, Xiao FS. Chem Commun (Camb). 2015 Mar 4.
  • Fluorescent sensing of monofunctional platinum species. Shen C, Harris BD, Dawson LJ, Charles KA, Hambley TW, New EJ. Chem Commun (Camb). 2015 Mar 11.
  • Outcomes and resource use of non-small cell lung cancer (NSCLC) patients treated with first-line platinum-based chemotherapy across Europe: FRAME prospective observational study. Moro-Sibilot D, Smit E, de Castro Carpeño J, Lesniewski-Kmak K, Aerts J, Villatoro R, Kraaij K, Nacerddine K, Dyachkova Y, Smith KT, Taipale K, Girvan AC, Visseren-Grul C, Schnabel PA. Lung Cancer. 2015 Feb 21.
  • Platinum-Catalyzed Domino Reaction with Benziodoxole Reagents for Accessing Benzene-Alkynylated Indoles. Li Y, Waser J. Angew Chem Int Ed Engl. 2015 Mar 10.
  • New palladium(ii) and platinum(ii) 5,5-diethylbarbiturate complexes with 2-phenylpyridine, 2,2'-bipyridine and 2,2'-dipyridylamine: synthesis, structures, DNA binding, molecular docking, cellular uptake, antioxidant activity and cytotoxicity. Icsel C, Yilmaz VT, Kaya Y, Samli H, Harrison WT, Buyukgungor O. Dalton Trans. 2015 Mar 16.
  • Tungsten trioxide nanoplate array supported platinum as a highly efficient counter electrode for dye-sensitized solar cells. Song D, Cui P, Zhao X, Li M, Chu L, Wang T, Jiang B. Nanoscale. 2015 Mar 6.
  • Long-term Platinum Retention After Platinum-based Chemotherapy in Testicular Cancer Survivors: A 20-Year Follow-up Study. Hjelle LV, Gundersen PO, Oldenburg J, Brydøy M, Tandstad T, Wilsgaard T, Fosså SD, Bremnes RM, Haugnes HS. Anticancer Res. 2015 Mar
  • In vitro effects of platinum compounds on renal cellular respiration in mice. Almarzooqi SS, Alfazari AS, Abdul-Kader HM, Saraswathiamma D, Albawardi AS, Souid AK. Int J Clin Exp Pathol. 2015 Jan 1
  • Direct observation of the dealloying process of a platinum-yttrium nanoparticle fuel cell cathode and its oxygenated species during the oxygen reduction reaction. Malacrida P, Sanchez Casalongue HG, Masini F, Kaya S, Hernández-Fernández P, Deiana D, Ogasawara H, Stephens IE, Nilsson A, Chorkendorff I. Phys Chem Chem Phys. 2015 Mar 16.
  • A phase II study of single-agent RO4929097, a gamma-secretase inhibitor of Notch signaling, in patients with recurrent platinum-resistant epithelial ovarian cancer: A study of the Princess Margaret Cancer Centre, Chicago and California phase II consortia. Diaz-Padilla I, Wilson MK, Clarke BA, Hirte HW, Welch SA, Mackay HJ, Biagi JJ, Reedijk M, Weberpals JI, Fleming GF, Wang L, Liu G, Zhou C, Blattler C, Ivy SP, Oza AM. Gynecol Oncol. 2015 Mar 10.
  • Triangular Platinum(II) Metallacycles: Syntheses, Photophysics, and Nonlinear Optics. Fan Y, Zhao D. ACS Appl Mater Interfaces. 2015 Mar 12.
  • Toxic Effect of Silver and Platinum Nanoparticles Toward the Freshwater Microalga Pseudokirchneriella subcapitata. Ksi??yk M, Asztemborska M, St?borowski R, Bystrzejewska-Piotrowska G. Bull Environ Contam Toxicol. 2015 Mar 6.
  • Chemotherapy-induced peripheral neuropathy in patients treated with taxanes and platinum derivatives. Ewertz M, Qvortrup C, Eckhoff L. Acta Oncol. 2015 Mar 9:1-5.
  • Efficacy of Tegafur-Uracil in Advanced Urothelial Cancer Patients after the Treatment Failure of Platinum-based Chemotherapy. Maolake A, Izumi K, Takahashi R, Itai S, Machioka K, Yaegashi H, Nohara T, Kitagawa Y, Kadono Y, Konaka H, Mizokami A, Namiki M. Anticancer Res. 2015 Mar
  • Electrochemical layer-by-layer approach to fabricate mechanically stable platinum black microelectrodes using a mussel-inspired polydopamine adhesive. Kim R, Nam Y. J Neural Eng. 2015 Apr
  • Platinum Oxoboryl Complexes as Substrates for the Formation of 1:1, 1:2, and 2:1 Lewis Acid-Base Adducts and 1,2-Dipolar Additions. Bertsch S, Brand J, Braunschweig H, Hupp F, Radacki K. Chemistry. 2015 Mar 11.
  • Platinum-Induced Neurotoxicity and Preventive Strategies: Past, Present, and Future. Avan A, Postma TJ, Ceresa C, Avan A, Cavaletti G, Giovannetti E, Peters GJ. Oncologist. 2015 Mar 12.
  • Chemometric study on the electrochemical incineration of nitrilotriacetic acid using platinum and boron-doped diamond anode. Zhang C, He Z, Wu J, Fu D. Chemosphere. 2015 Mar 3