Platinum Powder

High Purity Pt Powder
CAS 7440-06-4


Product Product Code Order or Specifications
(2N) 99% Platinum Powder PT-M-02-P Contact American Elements
(3N) 99.9% Platinum Powder PT-M-03-P Contact American Elements
(4N) 99.99% Platinum Powder PT-M-04-P Contact American Elements
(5N) 99.999% Platinum Powder PT-M-05-P Contact American Elements

CHEMICAL
IDENTIFIER
Formula CAS No. PubChem SID PubChem CID MDL No. EC No Beilstein
Re. No.
SMILES
Identifier
InChI
Identifier
InChI
Key
Pt 7440-06-4 24868136 23939 MFCD00011179 231-116-1 N/A [Pt] InChI=1S/Pt BASFCYQUMIYNBI-UHFFFAOYSA-N

PROPERTIES Mol. Wt. Appearance Density Tensile Strength Melting Point Boiling Point Thermal Conductivity Electrical Resistivity Eletronegativity Specific Heat Heat of Vaporization Heat of Fusion MSDS
195.08 Gray Powder 21.45 gm/cc N/A 1772°C 3827 °C 0.716 W/cm/K @ 298.2 K 10.6 microhm-cm @ 20°C 2.2 Paulings 0.0317 Cal/g/K @ 25°C 122 K-Cal/gm atom at 3827°C 4.70 Cal/gm mole Safety Data Sheet


Ultra High Purity Metal PowdersAmerican Elements specializes in producing high purity Platinum Powder with the smallest possible average grain sizes for use in of pressed and bonded sputtering targets, as platinum ink for screen printing of platinum thin film layers and in Chemical Vapor Deposition (CVD) and Physical Vapor Deposition (PVD) processes including Thermal and Electron Beam (E-Beam) Evaporation, Low Temperature Organic Evaporation, Atomic Layer Deposition (ALD), Metallic-Organic and Chemical Vapor Deposition (MOCVD). Powders are also useful in any application where high surface areas are desired such as water treatment and in fuel cell and solar applications. Nanoparticles (See also Nanotechnology Information and Quantum Dots) also produce very high surface areas. Our standard Powder particle sizes average in the range of - 325 mesh, - 100 mesh, 10-50 microns and submicron (< 1 micron). We can also provide many materials in the nanoscale range. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. See safety data and research below and pricing/lead time above. We also produce Platinum as rod, ingot, pieces, pellets, disc, granules, wire, and in compound forms, such as oxide. Other shapes are available by request.

Platinum (Pt) atomic and molecular weight, atomic number and elemental symbolPlatinum (atomic symbol: Pt, atomic number: 78) is a Block D, Group 10, Period 6 element with an atomic weight of 195.084. Platinum Bohr ModelThe number of electrons in each of platinum's shells is [2, 8, 18, 32, 17, 1] and its electron configuration is [Xe] 4f14 5d9 6s1. The platinum atom has a radius of 139 pm and a Van der Waals radius of 175 pm. Platinum was discovered and first isolated by Antonio de Ulloa in 1735. Elemental PlatinumIt is one of the rarest elements in the earth's crust, occurring at a concentration of only 0.005 ppm. Platinum is found uncombined as a free element and alloyed with iridium as platiniridium. In its elemental form, platinum has a grayish white appearance. It is highly resistant to corrosion: the metal does not oxidize in air at any temperature. It is generally non-reactive, even at high temperatures. The origin of the name "platinum" comes from the Spanish word "platina," meaning silver. For more information on platinum, including properties, safety data, research, and American Elements' catalog of platinum products, visit the Platinum Information Center.


HEALTH, SAFETY & TRANSPORTATION INFORMATION
N/A
N/A
N/A
N/A
N/A
TP2160000
N/A
nwg
N/A        

CUSTOMERS FOR PLATINUM POWDER HAVE ALSO LOOKED AT
Platinum Fluoride Platinum Acetylacetonate Platinum Metal Platinum Chloride Platinum Foil
Platinum Rhodium Alloy Platinum Acetate Solution Platinum Oxide Nanopowder Platinum Pellets Platinum Powder
Platinum Sputtering Target Platinum Oxide Platinum Oxide Pellets Platinum Wire Platinum Iridium Alloy
Show Me MORE Forms of Platinum

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis





German   Korean   French   Japanese   Spanish   Chinese (Simplified)   Portuguese   Russian   Chinese (Taiwan)  Italian   Turkish   Polish   Dutch   Czech   Swedish   Hungarian   Danish   Hebrew

Production Catalog Available in 36 Countries & Languages


Recent Research & Development for Platinum

  • Jihoon Kim, Shinyoung Yeo, Jae-Deok Jeon, Seung-Yeop Kwak, Enhancement of hydrogen storage capacity and hydrostability of metal–organic frameworks (MOFs) with surface-loaded platinum nanoparticles and carbon black, Microporous and Mesoporous Materials, Volume 202, 15 January 2015
  • Tran Thi Da, Nguyen Thi Thanh Chi, Luc Van Meervelt, Peter Mangwala Kimpende, Nguyen Huu Dinh, Synthesis, structure and properties of two series of platinum(II) complexes containing methyleugenol or chelating methyleugenol and amine, Polyhedron, Volume 85, 8 January 2015
  • Louise M. Diamond, Fergus R. Knight, David B. Cordes, Andrew C.C. Ward, Alexandra M.Z. Slawin, J. Derek Woollins, Acenaphtho[5,6-cd]-1,2-dichalcogenoles and their platinum complexes, Polyhedron, Volume 85, 8 January 2015
  • Yuanliang Zhang, Siguo Chen, Yao Wang, Wei Ding, Rui Wu, Li Li, Xueqiang Qi, Zidong Wei, Study of the degradation mechanisms of carbon-supported platinum fuel cells catalyst via different accelerated stress test, Journal of Power Sources, Volume 273, 1 January 2015
  • Xiaoting Chen, Conghui Si, Yulai Gao, Jan Frenzel, Junzhe Sun, Gunther Eggeler, Zhonghua Zhang, Multi-component nanoporous platinum–ruthenium–copper–osmium–iridium alloy with enhanced electrocatalytic activity towards methanol oxidation and oxygen reduction, Journal of Power Sources, Volume 273, 1 January 2015
  • Zheng Bo, Dan Hu, Jing Kong, Jianhua Yan, Kefa Cen, Performance of vertically oriented graphene supported platinum–ruthenium bimetallic catalyst for methanol oxidation, Journal of Power Sources, Volume 273, 1 January 2015
  • Yuanyuan Jiang, Qiang Kang, Jingjing Zhang, Hong-Bin Dai, Ping Wang, High-performance nickel–platinum nanocatalyst supported on mesoporous alumina for hydrogen generation from hydrous hydrazine, Journal of Power Sources, Volume 273, 1 January 2015
  • M.J. Prest, J.S. Richardson-Bullock, Q.T. Zhao, J.T. Muhonen, D. Gunnarsson, M. Prunnila, V.A. Shah, T.E. Whall, E.H.C. Parker, D.R. Leadley, Superconducting platinum silicide for electron cooling in silicon, Solid-State Electronics, Volume 103, January 2015
  • Zhenhua Xu, Jianwei Dai, Jing Niu, Na Li, Guanghong Huang, Limin He, Thermal shock behavior of platinum aluminide bond coat/electron beam-physical vapor deposited thermal barrier coatings, Journal of Alloys and Compounds, Volume 617, 25 December 2014
  • Rui Zhang, Weixin Lv, Guanghua Li, Mohammed Adnan Mezaal, Xiaojing Li, Lixu Lei, Retarding of electrochemical oxidation of formate on the platinum anode by a coat of Nafion membrane, Journal of Power Sources, Volume 272, 25 December 2014