Antimony Tin Oxide (ATO) Nanoparticles

High Purity Sb2SnO5 Nanoparticles / Nanopowder


Product Product Code Order or Specifications
(2N) 99% Antimony Tin Oxide Nanoparticles SB-SNOX-02-NP Contact American Elements
(3N) 99.9% Antimony Tin Oxide Nanoparticles SB-SNOX-03-NP Contact American Elements
(4N) 99.99% Antimony Tin Oxide Nanoparticles SB-SNOX-04-NP Contact American Elements
(5N) 99.999% Antimony Tin Oxide Nanoparticles SB-SNOX-05-NP Contact American Elements

CHEMICAL
IDENTIFIER
Formula CAS No. PubChem SID PubChem CID MDL No. EC No IUPAC Name Beilstein
Re. No.
SMILES
Identifier
InChI
Identifier
InChI
Key
Sb2SnO5 N/A N/A N/A MFCD00799153 N/A N/A N/A O=[Sn]=O.O=[Sb]O[Sb]=O InChI=1S/5O.2Sb.Sn DCEPJBOKQZTMOG-UHFFFAOYSA-N

PROPERTIES Mol. Wt. Appearance True Density Bulk Density Melting Point Boiling Point Average Particle Size Size Range Crystal Phase Specific Surface Area Morphology MSDS
444.23 Blue Powder 6.8 g/cm3 0.95 g/cm3 N/A N/A 15 nm N/A Tetragonal 47 m2/g N/A Safety Data Sheet

Oxide IonHigh Purity, D50 = +10 nanometer (nm) by SEMAntimony Tin Oxide (ATO) Nanoparticles, nanopowder, nanodots or nanocrystals are spherical or faceted high surface area nanocrystalline alloy particles with magnetic properties. Nanoscale Antimony Tin Oxide (ATO) Particles are typically 20-40 nanometers (nm) with specific surface area (SSA) in the 30 - 50 m 2 /g range and also available in with an average particle size of 100 nm range with a specific surface area of approximately 7 m 2 /g. Nano Antimony Tin Oxide (ATO) Particles are also available in ultra high purity and high purity and coated and dispersed forms. They are also available as a nanofluid through the AE Nanofluid production group. Nanofluids are generally defined as suspended nanoparticles in solution either using surfactant or surface charge technology. Nanofluid dispersion and coating selection technical guidance is also available. Other nanostructures include nanorods, nanowhiskers, nanohorns, nanopyramids and other nanocomposites. Surface functionalized nanoparticles allow for the particles to be preferentially adsorbed at the surface interface using chemically bound polymers.

Development research is underway in Nano Electronics and Photonics materials, such as MEMS and NEMS, Bio Nano Materials, such as Biomarkers, Bio Diagnostics & Bio Sensors, and Related Nano Materials, for use in Polymers, Textiles, Fuel Cell Layers, Composites and Solar Energy materials. Nanopowders are analyzed for chemical composition by ICP, particle size distribution (PSD) by laser diffraction, and for Specific Surface Area (SSA) by BET multi-point correlation techniques. Novel nanotechnology applications also include Quantum Dots. High surface areas can also be achieved using solutions and using thin film by sputtering targets and evaporation technology using pellets, rod and foil.. Applications for Antimony Tin Oxide Nanocrystals include in high conductivity uses, as an antistatic additive in coatings, plastics, nanowire, fiber and textiles and in certain alloy and catalyst applications, in electrochromic or electro-optics and magnetic machines and micro-equipment due to their high conductivity. Further research is being done for their potential electrical, dielectric, magnetic, optical, imaging, catalytic, bio-medical and bioscience properties. Antimony Tin Oxide Nano Particles are generally immediately available in most volumes. Additional technical, research and safety (MSDS) information is available.

Antimony (Sb) atomic and molecular weight, atomic number and elemental symbolAntimony (atomic symbol: As, atomic number: 51) is a Block P, Group 15, Period 5 element with an atomic radius of 121.760. Antimony Bohr Model The number of electrons in each of antimony's shells is 2, 8, 18, 18, 5 and its electron configuration is [Kr] 4d10 5s2 5p3. The antimony atom has a radius of 140 pm and a Van der Waals radius of 206 pm. Antimony was discovered around 3000 BC and first isolated by Vannoccio Biringuccio in 1540 AD. In its elemental form, antimony has a silvery lustrous gray appearance.Elemental Antimony The most common source of antimony is the sulfide mineral known as stibnite (Sb2S3), although it sometimes occurs natively as well. Antimony has numerous applications, most commonly in flame-retardant materials; it also increases the hardness and strength of lead when combined in an alloy and is frequently employed as a dopant in semiconductor materials. Its name is derived from the Greek words anti and monos, meaning a metal not found by itself. For more information on antimony, including properties, safety data, research, and American Elements' catalog of antimony products, visit the Antimony Information Center.

Tin Bohr ModelTin (Sn) atomic and molecular weight, atomic number and elemental symbolTin (atomic symbol: Sn, atomic number: 50) is a Block P, Group 14, Period 5 element with an atomic weight of 118.710. The number of electrons in each of tin's shells is 2, 8, 18, 18, 4 and its electron configuration is [Kr] 4d10 5s2 5p2. The tin atom has a radius of 140.5 pm and a Van der Waals radius of 217 pm.In its elemental form, tin has a silvery-gray metallic appearance. It is malleable, ductile and highly crystalline. High Purity (99.9999%) Tin (Sn) MetalTin has nine stable isotopes and 18 unstable isotopes. Under 3.72 degrees Kelvin, Tin becomes a superconductor. Applications for tin include soldering, plating, and such alloys as pewter. The first uses of tin can be dated to the Bronze Age around 3000 BC in which tin and copper were combined to make the alloy bronze. The origin of the word tin comes from the Latin word Stannum which translates to the Anglo-Saxon word tin. For more information on tin, including properties, safety data, research, and American Elements' catalog of tin products, visit the Tin Information Center.


HEALTH, SAFETY & TRANSPORTATION INFORMATION
Warning
H315-H319
N/A
36/37/38
26
N/A
UN 1549 6.1/PG 3
3
Exclamation Mark-Acute Toxicity        

CUSTOMERS FOR ANTIMONY TIN OXIDE NANOPARTICLES HAVE ALSO LOOKED AT
Show Me MORE Forms of Antimony

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis





German   Korean   French   Japanese   Spanish   Chinese (Simplified)   Portuguese   Russian   Chinese (Taiwan)  Italian   Turkish   Polish   Dutch   Czech   Swedish   Hungarian   Danish   Hebrew

Production Catalog Available in 36 Countries & Languages


Recent Research & Development for Antimony

  • A. Han, I.I. Ozturk, C.N. Banti, N. Kourkoumelis, M. Manoli, A.J. Tasiopoulos, A.M. Owczarzak, M. Kubicki, S.K. Hadjikakou, Antimony(III) halide compounds of thioureas: Structures and biological activity, Polyhedron, Volume 79, 5 September 2014
  • K. Ouannes, M.T. Soltani, M. Poulain, G. Boulon, G. Alombert-Goget, Y. Guyot, A. Pillonnet, K. Lebbou, Spectroscopic properties of Er3+-doped antimony oxide glass, Journal of Alloys and Compounds, Volume 603, 5 August 2014
  • Lijie Zhang, Hongfei Yu, Wei Cao, Youqing Dong, Chao Zou, Yun Yang, Shaoming Huang, Ning Dai, Da-Ming Zhu, Antimony doped cadmium selenium nanobelts with enhanced electrical and optoelectrical properties, Applied Surface Science, Volume 307, 15 July 2014
  • Alexandra Faucher, Victor V. Terskikh, Roderick E. Wasylishen, Feasibility of arsenic and antimony NMR spectroscopy in solids: An investigation of some group 15 compounds, Solid State Nuclear Magnetic Resonance, Volumes 61–62, July–September 2014
  • Zhuang-hao Zheng, Ping Fan, Jing-ting Luo, Xing-min Cai, Guang-xing Liang, Dong-ping Zhang, Fan Ye, Thermoelectric properties of bismuth antimony tellurium thin films through bilayer annealing prepared by ion beam sputtering deposition, Thin Solid Films, Volume 562, 1 July 2014
  • Wei-Chen Chen, Dah-Shyang Tsai, Lin-Wei Tseng, Li-Rong Yang, Minh-Vien Le, Proton exchange membrane fuel cell of polybenzimidazole electrolyte doped with phosphoric acid and antimony chloride, International Journal of Hydrogen Energy, Volume 39, Issue 19, 24 June 2014
  • Karthik Ramasamy, Benjamin Tien, P.S. Archana, Arunava Gupta, Copper antimony sulfide (CuSbS2) mesocrystals: A potential counter electrode material for dye-sensitized solar cells, Materials Letters, Volume 124, 1 June 2014
  • Saeed Farahany, Mohd Hasbullah Idris, Ali Ourdjini, Evaluations of antimony and strontium interaction in an Al–Si–Cu–Zn die cast alloy, Thermochimica Acta, Volume 584, 20 May 2014
  • Antimony promises alternative battery anodes, Nano Today, Available online 16 May 2014
  • Yu Zou, Jiang Jiang, Colloidal synthesis of chalcostibite copper antimony sulfide nanocrystals, Materials Letters, Volume 123, 15 May 2014

Recent Research & Development for Tin

  • Nguyen Dang Nam, Mahesh Vaka, Nguyen Tran Hung, Corrosion behavior of TiN, TiAlN, TiAlSiN-coated 316L stainless steel in simulated proton exchange membrane fuel cell environment, Journal of Power Sources, Volume 268, 5 December 2014
  • M.A. Deyab, Hydrogen generation by tin corrosion in lactic acid solution promoted by sodium perchlorate, Journal of Power Sources, Volume 268, 5 December 2014
  • Feng Gu, Wenjuan Huang, Shufen Wang, Xing Cheng, Yanjie Hu, Chunzhong Li, Improved photoelectric conversion efficiency from titanium oxide-coupled tin oxide nanoparticles formed in flame, Journal of Power Sources, Volume 268, 5 December 2014
  • C. Tholander, B. Alling, F. Tasnádi, J.E. Greene, L. Hultman, Effect of Al substitution on Ti, Al, and N adatom dynamics on TiN(001), (011), and (111) surfaces, Surface Science, Volume 630, December 2014
  • A. Elrefaey, J. Janczak-Rusch, M.M. Koebel, Direct glass-to-metal joining by simultaneous anodic bonding and soldering with activated liquid tin solder, Journal of Materials Processing Technology, Volume 214, Issue 11, November 2014
  • Xiang Lei Shi, Jian Tao Wang, Jian Nong Wang, Roughness improvement of fluorine-doped tin oxide thin films by using different alcohol solvents, Journal of Alloys and Compounds, Volume 611, 25 October 2014
  • K. Vijayarangamuthu, Shyama Rath, Nanoparticle size, oxidation state, and sensing response of tin oxide nanopowders using Raman spectroscopy, Journal of Alloys and Compounds, Volume 610, 15 October 2014
  • Caitian Gao, Xiaodong Li, Xupeng Zhu, Lulu Chen, Zemin Zhang, Youqing Wang, Zhenxing Zhang, Huigao Duan, Erqing Xie, Branched hierarchical photoanode of titanium dioxide nanoneedles on tin dioxide nanofiber network for high performance dye-sensitized solar cells, Journal of Power Sources, Volume 264, 15 October 2014
  • Shu Wei, Dong-Dong Han, Li Guo, Yinyan He, Hong Ding, Yong-Lai Zhang, Feng-Shou Xiao, In situ immobilization of tin dioxide nanoparticles by nanoporous polymers scaffold toward monolithic humidity sensing devices, Journal of Colloid and Interface Science, Volume 431, 1 October 2014
  • G. Kilibarda, S. Schlabach, V. Winkler, M. Bruns, T. Hanemann, D.V. Szabó, Electrochemical performance of tin-based nano-composite electrodes using a vinylene carbonate-containing electrolyte for Li-ion cells, Journal of Power Sources, Volume 263, 1 October 2014
  • Kehua Dai, Hui Zhao, Zhihui Wang, Xiangyun Song, Vince Battaglia, Gao Liu, Toward high specific capacity and high cycling stability of pure tin nanoparticles with conductive polymer binder for sodium ion batteries, Journal of Power Sources, Volume 263, 1 October 2014
  • Atasheh Soleimani-Gorgani, Ehsan Bakhshandeh, Farhood Najafi, Effect of dispersant agents on morphology and optical–electrical properties of nano indium tin oxide ink-jet ink, Journal of the European Ceramic Society, Volume 34, Issue 12, October 2014
  • Bhupendra Singh, Ji-Hye Kim, Jun-Young Park, Sun-Ju Song, Ionic conductivity of Mn2+ doped dense tin pyrophosphate electrolytes synthesized by a new co-precipitation method, Journal of the European Ceramic Society, Volume 34, Issue 12, October 2014
  • Shihyun Ahn, Anh Huy Tuan Le, Sunbo Kim, Cheolmin Park, Chonghoon Shin, Youn-Jung Lee, Jaehyeong Lee, Chaehwan Jeong, Vinh Ai Dao, Junsin Yi, The effects of orientation changes in indium tin oxide films on performance of crystalline silicon solar cell with shallow-emitter, Materials Letters, Volume 132, 1 October 2014
  • Faheem K. Butt, Chuanbao Cao, Tariq Mahmood, Faryal Idrees, Muhammad Tahir, Waheed S. Khan, Zulfiqar Ali, Muhammad Rizwan, M. Tanveer, Sajad Hussain, Imran Aslam, Dapeng Yu, Metal-catalyzed synthesis of ultralong tin dioxide nanobelts: Electrical and optical properties with oxygen vacancy-related orange emission, Materials Science in Semiconductor Processing, Volume 26, October 2014
  • Zhou Xu, Peng Chen, Zhenlong Wu, Feng Xu, Guofeng Yang, Bin Liu, Chongbin Tan, Lin Zhang, Rong Zhang, Youdou Zheng, Influence of thermal annealing on electrical and optical properties of indium tin oxide thin films, Materials Science in Semiconductor Processing, Volume 26, October 2014
  • L.P. Chikhale, J.Y. Patil, A.V. Rajgure, R.C. Pawar, I.S. Mulla, S.S. Suryavanshi, Synthesis, characterization and LPG response of Pd loaded Fe doped tin oxide thick films, Journal of Alloys and Compounds, Volume 608, 25 September 2014
  • Monika Madej, The effect of TiN and CrN interlayers on the tribological behavior of DLC coatings, Wear, Volume 317, Issues 1–2, 15 September 2014
  • Bhim Singh Rathore, Deepak Pathania, Styrene–tin (IV) phosphate nanocomposite for photocatalytic degradation of organic dye in presence of visible light, Journal of Alloys and Compounds, Volume 606, 5 September 2014
  • Brian Cardineau, Ryan Del Re, Miles Marnell, Hashim Al-Mashat, Michaela Vockenhuber, Yasin Ekinci, Chandra Sarma, Daniel A. Freedman, Robert L. Brainard, Photolithographic properties of tin-oxo clusters using extreme ultraviolet light (13.5 nm), Microelectronic Engineering, Volume 127, 5 September 2014