Tin 2 - Ethylhexanoate

CAS 301-10-0

Product Product Code Order or Specifications
(2N) 99% Tin 2 - Ethylhexanoate SN-2EH-02 Contact American Elements
(3N) 99.9% Tin 2 - Ethylhexanoate SN-2EH-03 Contact American Elements
(4N) 99.99% Tin 2 - Ethylhexanoate SN-2EH-04 Contact American Elements
(5N) 99.999% Tin 2 - Ethylhexanoate SN-2EH-05 Contact American Elements

Formula CAS No. PubChem SID PubChem CID MDL No. EC No IUPAC Name Beilstein
Re. No.
C16H30O4 301-10-0 24899548 9318 MFCD00002676 206-108-6 2-ethylhexanoate; tin(2+) N/A [Sn+4].[O-]C

PROPERTIES Compound Formula Mol. Wt. Appearance Density

Exact Mass

Monoisotopic Mass Charge MSDS
[CH3(CH2)3CH(C2H5)CO2]2Sn 405.11 Viscous Liquid 1.25 g/cm3 406.116606 406.116606 0 Safety Data Sheet

Ethylhexanoate Formula Diagram (CH3(CH2)3CH(C2H5)CO2H)Tin 2 - Ethylhexanoate is a Tin source that is soluble in organic solvents as an organometallic compound (also known as metalorganic, organo-inorganic and metallo-organic Organo-Metallic Packaging, Lab Quantity compounds). Ethylhexanoates are carboxylates with many commercial applications. They are commonly used in various catalysts for oxidation, hydrogenation and polymerization and as an adhesion promoter. It is generally immediately available in most volumes. Ultra high purity and high purity forms may be considered. Tin 2-Ethylhexanoate is one of numerous organo-metallic compounds (also known as metalorganic, organo-inorganic and metallo-organic compounds) sold by American Elements under the tradename AE Organo-Metallics™ for uses requiring non-aqueous solubility such as recent solar energy and water treatment applications. Similar results can sometimes also be achieved with Nanoparticles (also see Nanotechnology and Quantum Dots) and by thin film deposition. Note American Elements additionally supplies many materials as solutions. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement.

Tin Bohr ModelTin (Sn) atomic and molecular weight, atomic number and elemental symbolTin (atomic symbol: Sn, atomic number: 50) is a Block P, Group 14, Period 5 element with an atomic weight of 118.710. The number of electrons in each of tin's shells is 2, 8, 18, 18, 4 and its electron configuration is [Kr] 4d10 5s2 5p2. The tin atom has a radius of 140.5 pm and a Van der Waals radius of 217 pm.In its elemental form, tin has a silvery-gray metallic appearance. It is malleable, ductile and highly crystalline. High Purity (99.9999%) Tin (Sn) MetalTin has nine stable isotopes and 18 unstable isotopes. Under 3.72 degrees Kelvin, Tin becomes a superconductor. Applications for tin include soldering, plating, and such alloys as pewter. The first uses of tin can be dated to the Bronze Age around 3000 BC in which tin and copper were combined to make the alloy bronze. The origin of the word tin comes from the Latin word Stannum which translates to the Anglo-Saxon word tin. For more information on tin, including properties, safety data, research, and American Elements' catalog of tin products, visit the Tin Information Center.

Material Safety Data Sheet MSDS
Signal Word Warning
Hazard Statements H315-H319-H335
Hazard Codes Xi
Risk Codes 36/37/38
Safety Precautions 26-36/37/39
RTECS Number MO7870000
Transport Information N/A
WGK Germany 1
Globally Harmonized System of
Classification and Labelling (GHS)
Exclamation Mark-Acute Toxicity        

STANNOUS OCTOATE, Stannous 2-ethylhexanoate, Hexanoic acid, 2-ethyl-, tin(2+) salt, tin(2+) bis(2-ethylhexanoate), Tin octoate, Stannous 2-ethylhexoate, Tin(II) 2-ethylhexanoate, Tin ethylhexanoate

Bismuth Indium Tin Alloy Tin Acetate Tin Metal Tin Oxide Tin Chloride
Tin Pellets Tin Oxide Pellets Gold Tin Alloy Tin Nitrate Tin Acetylacetonate
Tin Foil Tin Rod Tin Nanoparticles Tin Powder Tin Sputtering Target
Show Me MORE Forms of Tin

Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.

Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis

German   Korean   French   Japanese   Spanish   Chinese (Simplified)   Portuguese   Russian   Chinese (Taiwan)  Italian   Turkish   Polish   Dutch   Czech   Swedish   Hungarian   Danish   Hebrew

Production Catalog Available in 36 Countries & Languages

Recent Research & Development for Tin

  • Balázs Illés, Barbara Horváth, Tin whisker growth from micro-alloyed SAC solders in corrosive climate, Journal of Alloys and Compounds, Volume 616, 15 December 2014
  • F.Z. Bedia, A. Bedia, N. Maloufi, M. Aillerie, F. Genty, B. Benyoucef, Effect of tin doping on optical properties of nanostructured ZnO thin films grown by spray pyrolysis technique, Journal of Alloys and Compounds, Volume 616, 15 December 2014
  • A.I. Ivon, A.B. Glot, R.I. Lavrov, Zhen-Ya Lu, Grain resistivity in zinc oxide and tin dioxide varistor ceramics, Journal of Alloys and Compounds, Volume 616, 15 December 2014
  • Chunhui Tan, Jing Cao, Abdul Muqsit Khattak, Feipeng Cai, Bo Jiang, Gai Yang, Suqin Hu, High-performance tin oxide-nitrogen doped graphene aerogel hybrids as anode materials for lithium-ion batteries, Journal of Power Sources, Volume 270, 15 December 2014
  • Qinghua Tian, Yang Tian, Zhengxi Zhang, Li Yang, Shin-ichi Hirano, Facile synthesis of ultrasmall tin oxide nanoparticles embedded in carbon as high-performance anode for lithium-ion batteries, Journal of Power Sources, Volume 269, 10 December 2014
  • Xiaodong Li, Zemin Zhang, Lulu Chen, Zhongping Liu, Jianli Cheng, Wei Ni, Erqing Xie, Bin Wang, Cadmium sulfide quantum dots sensitized tin dioxide–titanium dioxide heterojunction for efficient photoelectrochemical hydrogen production, Journal of Power Sources, Volume 269, 10 December 2014
  • Xinman Chen, Wei Hu, Shuxiang Wu, Dinghua Bao, Complementary switching on TiN/MgZnO/ZnO/Pt bipolar memory devices for nanocrossbar arrays, Journal of Alloys and Compounds, Volume 615, 5 December 2014
  • Nguyen Dang Nam, Mahesh Vaka, Nguyen Tran Hung, Corrosion behavior of TiN, TiAlN, TiAlSiN-coated 316L stainless steel in simulated proton exchange membrane fuel cell environment, Journal of Power Sources, Volume 268, 5 December 2014
  • M.A. Deyab, Hydrogen generation by tin corrosion in lactic acid solution promoted by sodium perchlorate, Journal of Power Sources, Volume 268, 5 December 2014
  • Feng Gu, Wenjuan Huang, Shufen Wang, Xing Cheng, Yanjie Hu, Chunzhong Li, Improved photoelectric conversion efficiency from titanium oxide-coupled tin oxide nanoparticles formed in flame, Journal of Power Sources, Volume 268, 5 December 2014
  • Yi Liao, Meizhen Xiang, Xiangguo Zeng, Jun Chen, Molecular dynamics study of the micro-spallation of single crystal tin, Computational Materials Science, Volume 95, December 2014
  • Mettaya Kitiwan, Akihiko Ito, Jianfeng Zhang, Takashi Goto, Densification and mechanical properties of cBN–TiN–TiB2 composites prepared by spark plasma sintering of SiO2-coated cBN powder, Journal of the European Ceramic Society, Volume 34, Issue 15, December 2014
  • E.N.S. Muccillo, R. Muccillo, Electric field-assisted sintering of tin dioxide with manganese dioxide addition, Journal of the European Ceramic Society, Volume 34, Issue 15, December 2014
  • C. Tholander, B. Alling, F. Tasnádi, J.E. Greene, L. Hultman, Effect of Al substitution on Ti, Al, and N adatom dynamics on TiN(001), (011), and (111) surfaces, Surface Science, Volume 630, December 2014
  • Sun-Dong Kim, Hyang-Tae Kim, Doo-Won Seo, Se Young Kim, Min-Soo Suh, Sang-Kuk Woo, Novel Mo/TiN composites for an alkali metal thermal-to-electric converter (AMTEC) electrode, Ceramics International, Volume 40, Issue 9, Part A, November 2014
  • Deqiang Yin, Yi Yang, Xianghe Peng, Yi Qin, Zhongchang Wang, Tensile and fracture process of the TiN/VN interface from first principles, Ceramics International, Volume 40, Issue 9, Part A, November 2014
  • A. Elrefaey, J. Janczak-Rusch, M.M. Koebel, Direct glass-to-metal joining by simultaneous anodic bonding and soldering with activated liquid tin solder, Journal of Materials Processing Technology, Volume 214, Issue 11, November 2014
  • Tobias Rosenthal, Simon Welzmiller, Lukas Neudert, Philipp Urban, Andy Fitch, Oliver Oeckler, Novel superstructure of the rocksalt type and element distribution in germanium tin antimony tellurides, Journal of Solid State Chemistry, Volume 219, November 2014
  • Yoichi Masui, Jiacheng Wang, Kentaro Teramura, Toshihiro Kogure, Tsunehiro Tanaka, Makoto Onaka, Unique structural characteristics of tin hydroxide nanoparticles-embedded montmorillonite (Sn-Mont) demonstrating efficient acid catalysis for various organic reactions, Microporous and Mesoporous Materials, Volume 198, 1 November 2014
  • Xiang Lei Shi, Jian Tao Wang, Jian Nong Wang, Roughness improvement of fluorine-doped tin oxide thin films by using different alcohol solvents, Journal of Alloys and Compounds, Volume 611, 25 October 2014

Recent Research & Development for Ethylhexanoates

  • Sang-Soo Chee, Jong-Hyun Lee, Synthesis of sub-10-nm Sn nanoparticles from Sn(II) 2-ethylhexanoate by a modified polyol process and preparation of AgSn film by melting of the Sn nanoparticles, Thin Solid Films, Volume 562, 1 July 2014
  • Mi Jung Park, C.K. Kim, Fabrication of polyethylene microporous membranes using triethylolpropane tris(2-ethylhexanoate) as a novel diluent by a thermally induced phase separation process, Journal of Membrane Science, Volume 449, 1 January 2014
  • Mathew W.C. Robinson, Anthony C. Swain, Niaz A. Khan, Influence of cross-linker and tin (II) bis-2-ethylhexanoate on compression set characteristics of poly(dimethylsiloxane) elastomer networks, Polymer Degradation and Stability, Available online 23 October 2013
  • Dirong Gong, Weimin Dong, Jinchang Hu, Xuequan Zhang, Liansheng Jiang, Living polymerization of 1,3-butadiene by a Ziegler–Natta type catalyst composed of iron(III) 2-ethylhexanoate, triisobutylaluminum and diethyl phosphite, Polymer, Volume 50, Issue 13, 19 June 2009
  • A. Daneshfar, H.S. Ghaziaskar, L. Shiri, M.H. Manafi, M. Nikorazm, S. Abassi, Synthesis of 2-ethylhexyl-2-ethylhexanoate catalyzed by immobilized lipase in n-hexane: A kinetic study, Biochemical Engineering Journal, Volume 37, Issue 3, 15 December 2007
  • David Necas, Daniele Ramella, Iva Rudovská, Martin Kotora, Ni(ethylhexanoate)2/nligand/Et2AlCl catalyzed cycloisomerization of 1,6-heptadienes to cyclopentane derivatives, Journal of Molecular Catalysis A: Chemical, Volume 274, Issues 1–2, 3 September 2007
  • Fabrizio Miccichè, Jacco van Haveren, Eef Oostveen, Weihua Ming, Rob van der Linde, Oxidation and oligomerization of ethyl linoleate under the influence of the combination of ascorbic acid 6-palmitate/iron-2-ethylhexanoate, Applied Catalysis A: General, Volume 297, Issue 2, 6 January 2006
  • S. Morlens, L. Ortega, B. Rousseau, S. Phok, J.L. Deschanvre, P. Chaudouet, P. Odier, Use of cerium ethylhexanoate solutions for preparation of CeO2 buffer layers by spin coating, Materials Science and Engineering: B, Volume 104, Issue 3, 15 November 2003
  • Emi Shigeno, Shigeyuki Seki, Kunihiko Shimizu, Yutaka Sawada, Makoto Ogawa, Azusa Shida, Mieko Ide, Akimasa Yajima, Asuya Yoshinaka, Formation of indium oxide thin films fabricated by a dip-coating process using indium 2-ethylhexanoate monohydroxide, Surface and Coatings Technology, Volumes 169–170, 2 June 2003
  • H.J Zhu, R.H Hill, The photochemical metal organic deposition of manganese oxide films from films of manganese(II) 2-ethylhexanoate: a mechanistic study, Journal of Non-Crystalline Solids, Volume 311, Issue 2, November 2002
  • Laura S. Andronic, Ross H. Hill, The mechanism of the photochemical metal organic deposition of lead oxide films from thin films of lead (II) 2-ethylhexanoate, Journal of Photochemistry and Photobiology A: Chemistry, Volume 152, Issues 1–3, 20 September 2002
  • Y Yang, H Kim, J Lee, H Paik, H.G Jang, Roles of chloro compound in homogeneous [Cr(2-ethylhexanoate)3/2,5-dimethylpyrrole/triethylaluminum/chloro compound] catalyst system for ethylene trimerization, Applied Catalysis A: General, Volume 193, Issues 1–2, 28 February 2000
  • , Ethyl 2-ethylhexanoate, Food and Chemical Toxicology, Volume 38, Supplement 3, 2000
  • John Fitt, Kapa Prasad, Oljan Repic, Thomas J. Blacklock, Sodium 2-ethylhexanoate: A mild acid scavenger useful in acylation of amines, Tetrahedron Letters, Volume 39, Issue 39, 24 September 1998
  • Hans R. Kricheldorf, Andreas Mahler, Polymers of carbonic acid 18: polymerizations of cyclobis(hexamethylene carbonate) by means of BuSnCl3 or Sn(II)2-ethylhexanoate, Polymer, Volume 37, Issue 19, 1996
  • S. Xue, W. Ousi-Benomar, R.A. Lessard, a-Fe2O3 thin films prepared by metalorganic deposition (MOD) from Fe(III) 2-ethylhexanoate, Thin Solid Films, Volume 250, Issues 1–2, 1 October 1994
  • Michael D. Collins, William J. Scott, Scott J. Miller, David A. Evans, Heinz Nau, Murine teratology and pharmacokinetics of the enantiomers of sodium 2-ethylhexanoate, Toxicology and Applied Pharmacology, Volume 112, Issue 2, February 1992
  • Stephen J. Clarson, Zaiming Wang, James E. Mark, Effect of stannous 2-ethylhexanoate on the network formation and chain extension reactions of a,?-dihydroxy terminated poly(dimethylsiloxane), European Polymer Journal, Volume 26, Issue 6, 1990
  • S. Xue, W. Ousi-Benomar, R.A. Lessard, a-Fe2O3 thin films prepared by metalorganic deposition (MOD) from Fe(III) 2-ethylhexanoate, Thin Solid Films, Volume 250, Issues 1–2, 1 October 1994
  • Akira Negishi, Yoshio Takahashi, Ryuji Sakamoto, Takeo Ozawa, Masayuki Kamimoto, Thermoanalytical investigation of YBa2Cu3O7-y superconductor: III. Preparation from mixed 2-ethylhexanoates of yttrium, barium and copper, Thermochimica Acta, Volume 140, 15 March 1989