Skip to Page Content

Tin Nitrate Solution

AE Solutions™ Sn(NO 3)4

Product Product Code Request Quote
(2N) 99% Tin Nitrate Solution SN-NAT-02-SOL Request Quote
(3N) 99.9% Tin Nitrate Solution SN-NAT-03-SOL Request Quote
(4N) 99.99% Tin Nitrate Solution SN-NAT-04-SOL Request Quote
(5N) 99.999% Tin Nitrate Solution SN-NAT-05-SOL Request Quote

Formula CAS No. PubChem SID PubChem CID MDL No. EC No IUPAC Name Beilstein
Re. No.
Sn(NO3)4 N/A N/A N/A N/A N/A N/A N/A [Sn+4].O=[N+]([O-])[O-].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O InChI=1S/4NO3.Sn/c4*2-1(3)4;/q4*-1;+4 YQMWDQQWGKVOSQ-UHFFFAOYSA-N

PROPERTIES Compound Formula Mol. Wt. Appearance Density Exact Mass Monoisotopic Mass Charge MSDS
N4O12Sn 366.71 Silky crystals g/cm3 N/A 367.853485 Da N/A Safety Data Sheet

Nitrate IonTin Nitrate Solutions are moderate to highly concentrated liquid solutions of Tin Nitrate. They are an excellent source of Tin Nitrate for applications requiring solubilized Compound Solutions Packaging, Bulk Quantity materials. American Elements can prepare dissolved homogenous solutions at customer specified concentrations or to the maximum stoichiometric concentration. Packaging is available in 55 gallon drums, smaller units and larger liquid totes. American Elements maintains solution production facilities in the United States, Northern Europe (Liverpool, UK), Southern Europe (Milan, Italy), Australia and China to allow for lower freight costs and quicker delivery to our customers .American Elements metal and rare earth compound solutions have numerous applications, but are commonly used in petrochemical cracking and automotive catalysts, water treatment, plating, textiles, research and in optic, laser, crystal and glass applications. Ultra high purity and high purity compositions improve both optical quality and usefulness as scientific standards. Nanoscale elemental powders and suspensions, as alternative high surface area forms, may be considered. We also produce Tin Nitrate Powder. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement.

Tin Bohr ModelTin (Sn) atomic and molecular weight, atomic number and elemental symbolTin (atomic symbol: Sn, atomic number: 50) is a Block P, Group 14, Period 5 element with an atomic weight of 118.710. The number of electrons in each of tin's shells is 2, 8, 18, 18, 4 and its electron configuration is [Kr] 4d10 5s2 5p2. The tin atom has a radius of 140.5 pm and a Van der Waals radius of 217 pm.In its elemental form, tin has a silvery-gray metallic appearance. It is malleable, ductile and highly crystalline. High Purity (99.9999%) Tin (Sn) MetalTin has nine stable isotopes and 18 unstable isotopes. Under 3.72 degrees Kelvin, Tin becomes a superconductor. Applications for tin include soldering, plating, and such alloys as pewter. The first uses of tin can be dated to the Bronze Age around 3000 BC in which tin and copper were combined to make the alloy bronze. The origin of the word tin comes from the Latin word Stannum which translates to the Anglo-Saxon word tin. For more information on tin, including properties, safety data, research, and American Elements' catalog of tin products, visit the Tin element page.


Tin(4+) tetranitrate

Bismuth Indium Tin Alloy Tin Acetate Tin Metal Tin Oxide Tin Chloride
Tin Pellets Tin Oxide Pellets Gold Tin Alloy Tin Nitrate Tin Acetylacetonate
Tin Foil Tin Rod Tin Nanoparticles Tin Powder Tin Sputtering Target
Show Me MORE Forms of Tin

Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums tTypical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.

Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis

Recent Research & Development for Tin

  • Oxidative Additions of Homoleptic Tin(II) Amidinate. Tomáš Chlupatý, Zde?ka R?ži?ková, Michal Horá?ek, Mercedes Alonso, Frank De Proft, Hana Kampová, Ji?í Brus, and Aleš R?ži?ka. Organometallics: January 28, 2015
  • Efficient Chemisorption of Organophosphorous Redox Probes on Indium Tin Oxide Surfaces under Mild Conditions. Amélie Forget, Benoît Limoges, and Véronique Balland. Langmuir: January 22, 2015
  • Influence of Texture Coefficient on Surface Morphology and Sensing Properties of W-Doped Nanocrystalline Tin Oxide Thin Films. Manjeet Kumar, Akshay Kumar, and A. C. Abhyankar. ACS Appl. Mater. Interfaces: January 20, 2015
  • Using the Thallous Ion Exchange Method to Exchange Tin into High Alumina Zeolites. 1. Crystal Structure of |Sn2+5.3Sn4+0.8Cl–1.8|[Si12Al12O48]-LTA. Jean Marie Vianney Nsanzimana, Cheol Woong Kim, Nam Ho Heo, and Karl Seff. J. Phys. Chem. C: January 16, 2015
  • Water-Dispersible Small Monodisperse Electrically Conducting Antimony-Doped Tin Oxide. Kristina Peters, Patrick Zeller, Goran Stefanic, Volodymyr Skoromets, Hynek N?mec, Petr Kužel, and Dina Fattakhova-Rohlfing. Chem. Mater.: January 9, 2015
  • A Paramagnetic Heterobimetallic Polymer: Synthesis, Reactivity, and Ring-Opening Polymerization of Tin-Bridged Homo- and Heteroleptic Vanadoarenophanes. Holger Braunschweig, Alexander Damme, Serhiy Demeshko, Klaus Dück, Thomas Kramer, Ivo Krummenacher, Franc Meyer, Krzysztof Radacki, Sascha Stellwag-Konertz, and George R. Whittell. J. Am. Chem. Soc.: January 5, 2015
  • Pendant Alkyl and Aryl Groups on Tin Control Complex Geometry and Reactivity with H2/D2 in Pt(SnR3)2(CNBut)2 (R = But, Pri, Ph, Mesityl). Anjaneyulu Koppaka, Lei Zhu, Veeranna Yempally, Derek Isrow, Perry J. Pellechia, and Burjor Captain. J. Am. Chem. Soc.: December 24, 2014
  • Electrochemical Modification of Indium Tin Oxide Using Di(4-nitrophenyl) Iodonium Tetrafluoroborate. Matthew R. Charlton, Kristin J. Suhr, Bradley J. Holliday, and Keith J. Stevenson. Langmuir: December 19, 2014
  • DNA Adsorption by Indium Tin Oxide Nanoparticles. Biwu Liu and Juewen Liu. Langmuir: December 18, 2014
  • Tin and Silicon Binary Oxide on the Carbon Support of a Pt Electrocatalyst with Enhanced Activity and Durability.. Fan Luo, Shijun Liao, Dai Dang, Yan Zheng, Dongwei Xu, Haoxiong Nan, Ting Shu, and Zhiyong Fu. ACS Catal.: December 3, 2014

Recent Research & Development for Nitrates

  • Surface-Enhanced Nitrate Photolysis on Ice. Guillaume Marcotte, Patrick Marchand, Stéphanie Pronovost, Patrick Ayotte, Carine Laffon, and Philippe Parent. J. Phys. Chem. A: February 11, 2015
  • Enhancement of Nitrite and Nitrate Electrocatalytic Reduction through the Employment of Self-Assembled Layers of Nickel- and Copper-Substituted Crown-Type Heteropolyanions. Shahzad Imar, Chiara Maccato, Calum Dickinson, Fathima Laffir, Mikhail Vagin, and Timothy McCormac. Langmuir: February 2, 2015
  • Facultative Nitrate Reduction by Electrode-Respiring Geobacter Metallireducens Biofilms as a Competitive Reaction to Electrode Reduction in a Bioelectrochemical System. Hiroyuki Kashima and John M. Regan. Environ. Sci. Technol.: January 27, 2015
  • Reactions of Rare Earth Hydrated Nitrates and oxides with Formamide: Relevant to Recycling Rare Earth Metals. Pradeep Samarasekere, Xiqu Wang, Watchareeya Kaveevivitchai, and Allan J. Jacobson. Crystal Growth & Design: January 20, 2015
  • Thermodynamic Modeling of Apparent Molal Volumes of Metal Nitrate Salts with Pitzer Model. Mouad Arrad, Mohammed Kaddami, Hannu Sippola, and Pekka Taskinen. J. Chem. Eng. Data: January 16, 2015
  • Fast Diffusion Reaction in the Composition and Morphology of Coprecipitated Carbonates and Nitrates of Copper(II), Magnesium(II), and Zinc(II). J. Michael Davidson, Khellil Sefiane, and Tiffany Wood. Ind. Eng. Chem. Res.: January 14, 2015
  • Novel Approach for the Preparation of Hydroxylammonium Nitrate from the Acid-Catalyzed Hydrolysis of Cyclohexanone Oxime. Fangfang Zhao, Kuiyi You, Ruige Li, Shan Tan, Pingle Liu, Jian Wu, Qiuhong Ai, and He’an Luo. Ind. Eng. Chem. Res.: January 6, 2015
  • Comparative Lipidomic Profiling of Two Dunaliella tertiolecta Strains with Different Growth Temperatures under Nitrate-Deficient Conditions. So-Hyun Kim, Hye Min Ahn, Sa Rang Lim, Seong-Joo Hong, Byung-Kwan Cho, Hookeun Lee, Choul-Gyun Lee, and Hyung-Kyoon Choi. J. Agric. Food Chem.: December 30, 2014
  • Independence of Nitrate and Nitrite Inhibition of Desulfovibrio vulgaris Hildenborough and Use of Nitrite as a Substrate for Growth. Hannah L. Korte, Avneesh Saini, Valentine V. Trotter, Gareth P. Butland, Adam P. Arkin, and Judy D. Wall. Environ. Sci. Technol.: December 22, 2014
  • Nitrate Concentration near the Surface of Frozen Aqueous Solutions. Harley A. Marrocco and Rebecca R. H. Michelsen. J. Phys. Chem. B: December 15, 2014