Tin Nitrate Solution

AE Solutions™ Sn(NO 3)4


Product Product Code Order or Specifications
(2N) 99% Tin Nitrate Solution SN-NAT-02-SOL Contact American Elements
(3N) 99.9% Tin Nitrate Solution SN-NAT-03-SOL Contact American Elements
(4N) 99.99% Tin Nitrate Solution SN-NAT-04-SOL Contact American Elements
(5N) 99.999% Tin Nitrate Solution SN-NAT-05-SOL Contact American Elements

CHEMICAL
IDENTIFIER
Formula CAS No. PubChem SID PubChem CID MDL No. EC No IUPAC Name Beilstein
Re. No.
SMILES
Identifier
InChI
Identifier
InChI
Key
Sn(NO3)4 N/A N/A N/A N/A N/A N/A N/A [Sn+4].O=[N+]([O-])[O-].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O InChI=1S/4NO3.Sn/c4*2-1(3)4;/q4*-1;+4 YQMWDQQWGKVOSQ-UHFFFAOYSA-N

PROPERTIES Compound Formula Mol. Wt. Appearance Density

Exact Mass

Monoisotopic Mass Charge MSDS
N4O12Sn 366.71 Silky crystals g/cm3 N/A 367.853485 Da N/A Safety Data Sheet

Nitrate IonTin Nitrate Solutions are moderate to highly concentrated liquid solutions of Tin Nitrate. They are an excellent source of Tin Nitrate for applications requiring solubilized Compound Solutions Packaging, Bulk Quantity materials. American Elements can prepare dissolved homogenous solutions at customer specified concentrations or to the maximum stoichiometric concentration. Packaging is available in 55 gallon drums, smaller units and larger liquid totes. American Elements maintains solution production facilities in the United States, Northern Europe (Liverpool, UK), Southern Europe (Milan, Italy), Australia and China to allow for lower freight costs and quicker delivery to our customers .American Elements metal and rare earth compound solutions have numerous applications, but are commonly used in petrochemical cracking and automotive catalysts, water treatment, plating, textiles, research and in optic, laser, crystal and glass applications. Ultra high purity and high purity compositions improve both optical quality and usefulness as scientific standards. Nanoscale (See also Nanotechnology Information and Quantum Dots) elemental powders and suspensions, as alternative high surface area forms, may be considered. We also produce Tin Nitrate Powder. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement.

Tin Bohr ModelTin (Sn) atomic and molecular weight, atomic number and elemental symbolTin (atomic symbol: Sn, atomic number: 50) is a Block P, Group 14, Period 5 element with an atomic weight of 118.710. The number of electrons in each of tin's shells is 2, 8, 18, 18, 4 and its electron configuration is [Kr] 4d10 5s2 5p2. The tin atom has a radius of 140.5 pm and a Van der Waals radius of 217 pm.In its elemental form, tin has a silvery-gray metallic appearance. It is malleable, ductile and highly crystalline. High Purity (99.9999%) Tin (Sn) MetalTin has nine stable isotopes and 18 unstable isotopes. Under 3.72 degrees Kelvin, Tin becomes a superconductor. Applications for tin include soldering, plating, and such alloys as pewter. The first uses of tin can be dated to the Bronze Age around 3000 BC in which tin and copper were combined to make the alloy bronze. The origin of the word tin comes from the Latin word Stannum which translates to the Anglo-Saxon word tin. For more information on tin, including properties, safety data, research, and American Elements' catalog of tin products, visit the Tin Information Center.

HEALTH, SAFETY & TRANSPORTATION INFORMATION
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A        

TIN NITRATE SYNONYMS
Tin(4+) tetranitrate

CUSTOMERS FOR TIN NITRATE SOLUTION HAVE ALSO LOOKED AT
Bismuth Indium Tin Alloy Tin Acetate Tin Metal Tin Oxide Tin Chloride
Tin Pellets Tin Oxide Pellets Gold Tin Alloy Tin Nitrate Tin Acetylacetonate
Tin Foil Tin Rod Tin Nanoparticles Tin Powder Tin Sputtering Target
Show Me MORE Forms of Tin

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis





German   Korean   French   Japanese   Spanish   Chinese (Simplified)   Portuguese   Russian   Chinese (Taiwan)  Italian   Turkish   Polish   Dutch   Czech   Swedish   Hungarian   Danish   Hebrew

Production Catalog Available in 36 Countries & Languages


Recent Research & Development for Tin

  • K. Jeyadheepan, M. Thamilselvan, Kyunghae Kim, Junsin Yi, C. Sanjeeviraja, Optoelectronic properties of R-F magnetron sputtered Cadmium Tin Oxide (Cd2SnO4) thin films for CdS/CdTe thin film solar cell applications, Journal of Alloys and Compounds, Volume 620, 25 January 2015
  • Abdullah M. Al-Hamdi, Mika Sillanpää, Joydeep Dutta, Photocatalytic degradation of phenol by iodine doped tin oxide nanoparticles under UV and sunlight irradiation, Journal of Alloys and Compounds, Volume 618, 5 January 2015
  • A.D. Pogrebnjak, D. Eyidi, G. Abadias, O.V. Bondar, V.M. Beresnev, O.V. Sobol, Structure and properties of arc evaporated nanoscale TiN/MoN multilayered systems, International Journal of Refractory Metals and Hard Materials, Volume 48, January 2015
  • M. Popovic, M. Novakovic, M. Mitric, K. Zhang, N. Bibic, Structural, optical and electrical properties of argon implanted TiN thin films, International Journal of Refractory Metals and Hard Materials, Volume 48, January 2015
  • Shuang Ma Andersen, Casper Frydendal Nørgaard, Mikkel Juul Larsen, Eivind Skou, Tin Dioxide as an Effective Antioxidant for Proton Exchange Membrane Fuel Cells, Journal of Power Sources, Volume 273, 1 January 2015
  • Dongsheng Guan, Jianyang Li, Xianfeng Gao, Chris Yuan, A comparative study of enhanced electrochemical stability of tin–nickel alloy anode for high-performance lithium ion battery, Journal of Alloys and Compounds, Volume 617, 25 December 2014
  • Xiaowei Liu, Donghua Teng, Ting Li, Yunhua Yu, Xiaohong Shao, Xiaoping Yang, Phosphorus-doped tin oxides/carbon nanofibers webs as lithium-ion battery anodes with enhanced reversible capacity, Journal of Power Sources, Volume 272, 25 December 2014
  • Lulu Chen, Xiaodong Li, Youqing Wang, Caitian Gao, Hang Zhang, Bo Zhao, Feng Teng, Jinyuan Zhou, Zhenxing Zhang, Xiaojun Pan, Erqing Xie, Low-temperature synthesis of tin dioxide hollow nanospheres and their potential applications in dye-sensitized solar cells and photoelectrochemical type self-powered ultraviolet photodetectors, Journal of Power Sources, Volume 272, 25 December 2014
  • Qinian Wang, Heng Dong, Hongbing Yu, Development of rolling tin gas diffusion electrode for carbon dioxide electrochemical reduction to produce formate in aqueous electrolyte, Journal of Power Sources, Volume 271, 20 December 2014
  • C.S. Ferreira, R.R. Passos, L.A. Pocrifka, Synthesis and properties of ternary mixture of nickel/cobalt/tin oxides for supercapacitors, Journal of Power Sources, Volume 271, 20 December 2014

Recent Research & Development for Nitrates

  • Teresa S. Ortner, Klaus Wurst, Lukas Perfler, Martina Tribus, Hubert Huppertz, Hydrothermal synthesis and characterization of the first mixed alkali borate-nitrate K3Na[B6O9(OH)3]NO3, Journal of Solid State Chemistry, Volume 221, January 2015
  • A.G. Fernández, S. Ushak, H. Galleguillos, F.J. Pérez, Thermal characterisation of an innovative quaternary molten nitrate mixture for energy storage in CSP plants, Solar Energy Materials and Solar Cells, Volume 132, January 2015
  • Ying Wang, Jia Yang, Wenliang Gao, Rihong Cong, Tao Yang, Organic-free hydrothermal synthesis of chalcopyrite CuInS2 and its photocatalytic activity for nitrate ions reduction, Materials Letters, Volume 137, 15 December 2014
  • L. Liu, J.P. Cheng, J. Zhang, F. Liu, X.B. Zhang, Effects of dodecyl sulfate and nitrate anions on the supercapacitive properties of α-Co(OH)2, Journal of Alloys and Compounds, Volume 615, 5 December 2014
  • Baogang Zhang, Ye Liu, Shuang Tong, Maosheng Zheng, Yinxin Zhao, Caixing Tian, Hengyuan Liu, Chuanping Feng, Enhancement of bacterial denitrification for nitrate removal in groundwater with electrical stimulation from microbial fuel cells, Journal of Power Sources, Volume 268, 5 December 2014
  • Jinghuan Luo, Guangyu Song, Jianyong Liu, Guangren Qian, Zhi Ping Xu, Mechanism of enhanced nitrate reduction via micro-electrolysis at the powdered zero-valent iron/activated carbon interface, Journal of Colloid and Interface Science, Volume 435, 1 December 2014
  • Dajana Japić, Marko Bitenc, Marjan Marinšek, Zorica Crnjak Orel, The impact of nano-milling on porous ZnO prepared from layered zinc hydroxide nitrate and zinc hydroxide carbonate, Materials Research Bulletin, Volume 60, December 2014
  • Xu Wang, Dahai Pan, Qian Xu, Min He, Shuwei Chen, Feng Yu, Ruifeng Li, Synthesis of ordered mesoporous alumina with high thermal stability using aluminum nitrate as precursor, Materials Letters, Volume 135, 15 November 2014
  • Javad Baneshi, Mohammad Haghighi, Naeimeh Jodeiri, Mozaffar Abdollahifar, Hossein Ajamein, Urea–nitrate combustion synthesis of ZrO2 and CeO2 doped CuO/Al2O3 nanocatalyst used in steam reforming of biomethanol for hydrogen production, Ceramics International, Volume 40, Issue 9, Part A, November 2014
  • Ian Y.Y. Bu, Sol–gel production of aluminium doped zinc oxide using aluminium nitrate, Materials Science in Semiconductor Processing, Volume 27, November 2014