Skip to Page Content

Tin(IV) Oxide

SnO2
CAS 18282-10-5


Product Product Code Request Quote
(2N) 99% Tin(IV) Oxide SN4-OX-02 Request Quote
(3N) 99.9% Tin(IV) Oxide SN4-OX-03 Request Quote
(4N) 99.99% Tin(IV) Oxide SN4-OX-04 Request Quote
(5N) 99.999% Tin(IV) Oxide SN4-OX-05 Request Quote

CHEMICAL
IDENTIFIER
Formula CAS No. PubChem CID MDL No. EC No IUPAC Name Beilstein
Re. No.
SMILES
Identifier
InChI
Identifier
InChI
Key
SnO2 18282-10-5 29011 MFCD00011244 242-159-0 dioxotin N/A O=[Sn]=O InChI=1S/2O.Sn XOLBLPGZBRYERU-UHFFFAOYSA-N

PROPERTIES Compound Formula Mol. Wt. Appearance Melting Point Boiling Point Density Exact Mass Monoisotopic Mass Charge MSDS
O2Sn 150.69 White to gray powder 1630 °C
(2966 °F)
1800–1900 °C
(sublimes)
6.95 g/cm3 151.892024 151.892024 0 Safety Data Sheet

Oxide IonTin(IV) Oxide (Stannic Oxide, or Tin Dioxide) is a highly insoluble thermally stable Tin source suitable for glass, optic and ceramic applications.Tin oxide is a colorless inorganic compound of tin and oxygen and has two forms, a stable blue-black form and a metastable red form. Oxide compounds are not conductive to electricity. However, certain perovskite structured oxides are electronically conductive finding application in the cathode of solid oxide fuel cells and oxygen generation systems. They arecompounds containing at least one oxygen anion and one metallic cation. They are typically insoluble in High Purity (99.999%) Tin Oxide (SnO) Powderaqueous solutions (water) and extremely stable making them useful in ceramic structures as simple as producing clay bowls to advanced electronics and in light weight structural components in aerospace and electrochemical applications such as fuel cells in which they exhibit ionic conductivity. Metal oxide compounds are basic anhydridesand can therefore react with acids and with strong reducing agents in redox reactions. Tin Oxide is also available in pellets, pieces, sputtering targets, tablets, and nanopowder (from American Elements' nanoscale production facilities). See Nanotechnology for more nanotechnology applications information. Tin Oxide is generally immediately available in most volumes. High purity, submicron and nanopowder forms may be considered. Additional technical, research and safety (MSDS) information is available.

Tin Bohr ModelTin (Sn) atomic and molecular weight, atomic number and elemental symbolTin (atomic symbol: Sn, atomic number: 50) is a Block P, Group 14, Period 5 element with an atomic weight of 118.710. The number of electrons in each of tin's shells is 2, 8, 18, 18, 4 and its electron configuration is [Kr] 4d10 5s2 5p2. The tin atom has a radius of 140.5 pm and a Van der Waals radius of 217 pm.In its elemental form, tin has a silvery-gray metallic appearance. It is malleable, ductile and highly crystalline. High Purity (99.9999%) Tin (Sn) MetalTin has nine stable isotopes and 18 unstable isotopes. Under 3.72 degrees Kelvin, Tin becomes a superconductor. Applications for tin include soldering, plating, and such alloys as pewter. The first uses of tin can be dated to the Bronze Age around 3000 BC in which tin and copper were combined to make the alloy bronze. The origin of the word tin comes from the Latin word Stannum which translates to the Anglo-Saxon word tin. For more information on tin, including properties, safety data, research, and American Elements' catalog of tin products, visit the Tin element page.


HEALTH, SAFETY & TRANSPORTATION INFORMATION
Material Safety Data Sheet MSDS
Signal Word N/A
Hazard Statements N/A
Hazard Codes N/A
Risk Codes N/A
Safety Precautions N/A
RTECS Number XQ4000000
Transport Information N/A
WGK Germany 3
Globally Harmonized System of
Classification and Labelling (GHS)
N/A        

TIN(IV) OXIDE SYNONYMS
Stannic oxide, tin(4+) oxide, dioxotin, stannic dioxide, stannane, oxo-, tin dioxide, stanic anhydride

CUSTOMERS FOR TIN(IV) OXIDE HAVE ALSO LOOKED AT
Bismuth Indium Tin Alloy Tin Acetate Tin Metal Tin Oxide Tin Chloride
Tin Pellets Tin Oxide Pellets Gold Tin Alloy Tin Nitrate Tin Acetylacetonate
Tin Foil Tin Rod Tin Nanoparticles Tin Powder Tin Sputtering Target
Show Me MORE Forms of Tin

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums tTypical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis

Recent Research & Development for Tin

  • Oxidative Additions of Homoleptic Tin(II) Amidinate. Tomáš Chlupatý, Zde?ka R?ži?ková, Michal Horá?ek, Mercedes Alonso, Frank De Proft, Hana Kampová, Ji?í Brus, and Aleš R?ži?ka. Organometallics: January 28, 2015
  • Efficient Chemisorption of Organophosphorous Redox Probes on Indium Tin Oxide Surfaces under Mild Conditions. Amélie Forget, Benoît Limoges, and Véronique Balland. Langmuir: January 22, 2015
  • Influence of Texture Coefficient on Surface Morphology and Sensing Properties of W-Doped Nanocrystalline Tin Oxide Thin Films. Manjeet Kumar, Akshay Kumar, and A. C. Abhyankar. ACS Appl. Mater. Interfaces: January 20, 2015
  • Using the Thallous Ion Exchange Method to Exchange Tin into High Alumina Zeolites. 1. Crystal Structure of |Sn2+5.3Sn4+0.8Cl–1.8|[Si12Al12O48]-LTA. Jean Marie Vianney Nsanzimana, Cheol Woong Kim, Nam Ho Heo, and Karl Seff. J. Phys. Chem. C: January 16, 2015
  • Water-Dispersible Small Monodisperse Electrically Conducting Antimony-Doped Tin Oxide. Kristina Peters, Patrick Zeller, Goran Stefanic, Volodymyr Skoromets, Hynek N?mec, Petr Kužel, and Dina Fattakhova-Rohlfing. Chem. Mater.: January 9, 2015
  • A Paramagnetic Heterobimetallic Polymer: Synthesis, Reactivity, and Ring-Opening Polymerization of Tin-Bridged Homo- and Heteroleptic Vanadoarenophanes. Holger Braunschweig, Alexander Damme, Serhiy Demeshko, Klaus Dück, Thomas Kramer, Ivo Krummenacher, Franc Meyer, Krzysztof Radacki, Sascha Stellwag-Konertz, and George R. Whittell. J. Am. Chem. Soc.: January 5, 2015
  • Pendant Alkyl and Aryl Groups on Tin Control Complex Geometry and Reactivity with H2/D2 in Pt(SnR3)2(CNBut)2 (R = But, Pri, Ph, Mesityl). Anjaneyulu Koppaka, Lei Zhu, Veeranna Yempally, Derek Isrow, Perry J. Pellechia, and Burjor Captain. J. Am. Chem. Soc.: December 24, 2014
  • Electrochemical Modification of Indium Tin Oxide Using Di(4-nitrophenyl) Iodonium Tetrafluoroborate. Matthew R. Charlton, Kristin J. Suhr, Bradley J. Holliday, and Keith J. Stevenson. Langmuir: December 19, 2014
  • DNA Adsorption by Indium Tin Oxide Nanoparticles. Biwu Liu and Juewen Liu. Langmuir: December 18, 2014
  • Tin and Silicon Binary Oxide on the Carbon Support of a Pt Electrocatalyst with Enhanced Activity and Durability.. Fan Luo, Shijun Liao, Dai Dang, Yan Zheng, Dongwei Xu, Haoxiong Nan, Ting Shu, and Zhiyong Fu. ACS Catal.: December 3, 2014