Tin Sulfate Solution

AE Solutions™ SnSO4
CAS 7488-55-3


Product Product Code Order or Specifications
(2N) 99% Tin Sulfate Solution SN-SAT-02-SOL Contact American Elements
(3N) 99.9% Tin Sulfate Solution SN-SAT-03-SOL Contact American Elements
(4N) 99.99% Tin Sulfate Solution SN-SAT-04-SOL Contact American Elements
(5N) 99.999% Tin Sulfate Solution SN-SAT-05-SOL Contact American Elements

CHEMICAL
IDENTIFIER
Formula CAS No. PubChem SID PubChem CID MDL No. EC No IUPAC Name Beilstein
Re. No.
SMILES
Identifier
InChI
Identifier
InChI
Key
SnSO4 7488-55-3 24854690 62643 MFCD00011246 N/A Tin(+2) cation sulfate N/A [O-]S(=O)(=O)[O-].[Sn+2] InChI=1S/H2O4S.Sn/c1-5(2,3)4;/h(H2,1,2,3,4);/q;+2/p-2 OBBXFSIWZVFYJR-UHFFFAOYSA-L

PROPERTIES Compound Formula Mol. Wt. Appearance Melting Point Boiling Point Density

Exact Mass

Monoisotopic Mass Charge MSDS
O4SSn 214.75 White-Yellowish Crystalline Solid 378° C
(712.4° F)
decomposes to SnO2 and SO2 4.15 g/cm3 N/A N/A 0 Safety Data Sheet

Sulfate IonTin Sulfate Solutions are moderate to highly concentrated liquid solutions of Tin Sulfate. They are an excellent source of Tin Sulfate for applications requiring solubilized Compound Solutions Packaging, Bulk Quantity materials. American Elements can prepare dissolved homogenous solutions at customer specified concentrations or to the maximum stoichiometric concentration. Packaging is available in 55 gallon drums, smaller units and larger liquid totes. American Elements maintains solution production facilities in the United States, Northern Europe (Liverpool, UK), Southern Europe (Milan, Italy), Australia and China to allow for lower freight costs and quicker delivery to our customers. .American Elements metal and rare earth compound solutions have numerous applications, but are commonly used in petrochemical cracking and automotive catalysts, water treatment, plating, textiles, research and in optic, laser, crystal and glass applications. Ultra high purity and high purity compositions improve both optical quality and usefulness as scientific standards. Nanoscale (See also Nanotechnology Information and Quantum Dots) elemental powders and suspensions, as alternative high surface area forms, may be considered. We also produce Tin Sulfate Powder.Sulfate compounds are salts or esters of sulfuric acid formed by replacing one or both of the hydrogens with a metal. Most metal sulfate compounds are readily soluble in water for uses such as water treatment, unlike fluorides and oxides which tend to be insoluble. Organometallic forms are soluble in organic solutions and sometimes in both aqueous and organic solutions. Metallic ions can also be dispersed utilizing suspended or coated nanoparticles (See also application discussion at Nanotechnology Information and at Quantum Dots) and deposited utilizing sputtering targets and evaporation materials for uses such as solar energy materials and fuel cells. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement.

Tin Bohr ModelTin (Sn) atomic and molecular weight, atomic number and elemental symbolTin (atomic symbol: Sn, atomic number: 50) is a Block P, Group 14, Period 5 element with an atomic weight of 118.710. The number of electrons in each of tin's shells is 2, 8, 18, 18, 4 and its electron configuration is [Kr] 4d10 5s2 5p2. The tin atom has a radius of 140.5 pm and a Van der Waals radius of 217 pm.In its elemental form, tin has a silvery-gray metallic appearance. It is malleable, ductile and highly crystalline. High Purity (99.9999%) Tin (Sn) MetalTin has nine stable isotopes and 18 unstable isotopes. Under 3.72 degrees Kelvin, Tin becomes a superconductor. Applications for tin include soldering, plating, and such alloys as pewter. The first uses of tin can be dated to the Bronze Age around 3000 BC in which tin and copper were combined to make the alloy bronze. The origin of the word tin comes from the Latin word Stannum which translates to the Anglo-Saxon word tin. For more information on tin, including properties, safety data, research, and American Elements' catalog of tin products, visit the Tin Information Center.

Sulfur Bohr ModelSulfur (S) atomic and molecular weight, atomic number and elemental symbolSulfur or Sulphur (atomic symbol: S, atomic number: 16) is a Block P, Group 16, Period 3 element with an atomic radius of 32.066. The number of electrons in each of Sulfur's shells is 2, 8, 6 and its electron configuration is [Ne]3s2 3p4. In its elemental form, sulfur has a light yellow appearance. The sulfur atom has a covalent radius of 105 pm and a Van der Waals radius of 180 pm. In nature, sulfur can be found in hot springs, meteorites, volcanoes, and as galena, gypsum, and epsom salts. Sulfur has been known since ancient times but was not accepted as an element until 1777 when Antoine Lavoisier helped to convince the scientific community that it was an element and not a compound. For more information on sulfur, including properties, safety data, research, and American Elements' catalog of sulfur products, visit the Sulfur Information Center.

HEALTH, SAFETY & TRANSPORTATION INFORMATION
Material Safety Data Sheet MSDS
Signal Word Warning
Hazard Statements H315-H319-H335
Hazard Codes Xi
Risk Codes 36/37/38
Safety Precautions 26-36
RTECS Number N/A
Transport Information N/A
WGK Germany nwg
Globally Harmonized System of
Classification and Labelling (GHS)
Exclamation Mark-Acute Toxicity        

TIN SULFATE SYNONYMS
Tin(4+) disulfate, Tin(+2) cation sulfate, Tin(II) sulfate, Stannous sulfate

CUSTOMERS FOR TIN SULFATE SOLUTION HAVE ALSO LOOKED AT
Bismuth Indium Tin Alloy Tin Acetate Tin Metal Tin Oxide Tin Chloride
Tin Pellets Tin Oxide Pellets Gold Tin Alloy Tin Nitrate Tin Acetylacetonate
Tin Foil Tin Rod Tin Nanoparticles Tin Powder Tin Sputtering Target
Show Me MORE Forms of Tin

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis





German   Korean   French   Japanese   Spanish   Chinese (Simplified)   Portuguese   Russian   Chinese (Taiwan)  Italian   Turkish   Polish   Dutch   Czech   Swedish   Hungarian   Danish   Hebrew

Production Catalog Available in 36 Countries & Languages


Recent Research & Development for Tin

  • Balázs Illés, Barbara Horváth, Tin whisker growth from micro-alloyed SAC solders in corrosive climate, Journal of Alloys and Compounds, Volume 616, 15 December 2014
  • F.Z. Bedia, A. Bedia, N. Maloufi, M. Aillerie, F. Genty, B. Benyoucef, Effect of tin doping on optical properties of nanostructured ZnO thin films grown by spray pyrolysis technique, Journal of Alloys and Compounds, Volume 616, 15 December 2014
  • A.I. Ivon, A.B. Glot, R.I. Lavrov, Zhen-Ya Lu, Grain resistivity in zinc oxide and tin dioxide varistor ceramics, Journal of Alloys and Compounds, Volume 616, 15 December 2014
  • Chunhui Tan, Jing Cao, Abdul Muqsit Khattak, Feipeng Cai, Bo Jiang, Gai Yang, Suqin Hu, High-performance tin oxide-nitrogen doped graphene aerogel hybrids as anode materials for lithium-ion batteries, Journal of Power Sources, Volume 270, 15 December 2014
  • Qinghua Tian, Yang Tian, Zhengxi Zhang, Li Yang, Shin-ichi Hirano, Facile synthesis of ultrasmall tin oxide nanoparticles embedded in carbon as high-performance anode for lithium-ion batteries, Journal of Power Sources, Volume 269, 10 December 2014
  • Xiaodong Li, Zemin Zhang, Lulu Chen, Zhongping Liu, Jianli Cheng, Wei Ni, Erqing Xie, Bin Wang, Cadmium sulfide quantum dots sensitized tin dioxide–titanium dioxide heterojunction for efficient photoelectrochemical hydrogen production, Journal of Power Sources, Volume 269, 10 December 2014
  • Xinman Chen, Wei Hu, Shuxiang Wu, Dinghua Bao, Complementary switching on TiN/MgZnO/ZnO/Pt bipolar memory devices for nanocrossbar arrays, Journal of Alloys and Compounds, Volume 615, 5 December 2014
  • Nguyen Dang Nam, Mahesh Vaka, Nguyen Tran Hung, Corrosion behavior of TiN, TiAlN, TiAlSiN-coated 316L stainless steel in simulated proton exchange membrane fuel cell environment, Journal of Power Sources, Volume 268, 5 December 2014
  • M.A. Deyab, Hydrogen generation by tin corrosion in lactic acid solution promoted by sodium perchlorate, Journal of Power Sources, Volume 268, 5 December 2014
  • Feng Gu, Wenjuan Huang, Shufen Wang, Xing Cheng, Yanjie Hu, Chunzhong Li, Improved photoelectric conversion efficiency from titanium oxide-coupled tin oxide nanoparticles formed in flame, Journal of Power Sources, Volume 268, 5 December 2014
  • Yi Liao, Meizhen Xiang, Xiangguo Zeng, Jun Chen, Molecular dynamics study of the micro-spallation of single crystal tin, Computational Materials Science, Volume 95, December 2014
  • Mettaya Kitiwan, Akihiko Ito, Jianfeng Zhang, Takashi Goto, Densification and mechanical properties of cBN–TiN–TiB2 composites prepared by spark plasma sintering of SiO2-coated cBN powder, Journal of the European Ceramic Society, Volume 34, Issue 15, December 2014
  • E.N.S. Muccillo, R. Muccillo, Electric field-assisted sintering of tin dioxide with manganese dioxide addition, Journal of the European Ceramic Society, Volume 34, Issue 15, December 2014
  • C. Tholander, B. Alling, F. Tasnádi, J.E. Greene, L. Hultman, Effect of Al substitution on Ti, Al, and N adatom dynamics on TiN(001), (011), and (111) surfaces, Surface Science, Volume 630, December 2014
  • Sun-Dong Kim, Hyang-Tae Kim, Doo-Won Seo, Se Young Kim, Min-Soo Suh, Sang-Kuk Woo, Novel Mo/TiN composites for an alkali metal thermal-to-electric converter (AMTEC) electrode, Ceramics International, Volume 40, Issue 9, Part A, November 2014
  • Deqiang Yin, Yi Yang, Xianghe Peng, Yi Qin, Zhongchang Wang, Tensile and fracture process of the TiN/VN interface from first principles, Ceramics International, Volume 40, Issue 9, Part A, November 2014
  • A. Elrefaey, J. Janczak-Rusch, M.M. Koebel, Direct glass-to-metal joining by simultaneous anodic bonding and soldering with activated liquid tin solder, Journal of Materials Processing Technology, Volume 214, Issue 11, November 2014
  • Tobias Rosenthal, Simon Welzmiller, Lukas Neudert, Philipp Urban, Andy Fitch, Oliver Oeckler, Novel superstructure of the rocksalt type and element distribution in germanium tin antimony tellurides, Journal of Solid State Chemistry, Volume 219, November 2014
  • Yoichi Masui, Jiacheng Wang, Kentaro Teramura, Toshihiro Kogure, Tsunehiro Tanaka, Makoto Onaka, Unique structural characteristics of tin hydroxide nanoparticles-embedded montmorillonite (Sn-Mont) demonstrating efficient acid catalysis for various organic reactions, Microporous and Mesoporous Materials, Volume 198, 1 November 2014
  • Xiang Lei Shi, Jian Tao Wang, Jian Nong Wang, Roughness improvement of fluorine-doped tin oxide thin films by using different alcohol solvents, Journal of Alloys and Compounds, Volume 611, 25 October 2014

Recent Research & Development for Sulfates

  • Xiaoshi Lang, Dianlong Wang, Chiyu Hu, Shenzhi Tang, Junsheng Zhu, Chenfeng Guo, The use of nanometer tetrabasic lead sulfate as positive active material additive for valve regulated lead-acid battery, Journal of Power Sources, Volume 270, 15 December 2014
  • L. Liu, J.P. Cheng, J. Zhang, F. Liu, X.B. Zhang, Effects of dodecyl sulfate and nitrate anions on the supercapacitive properties of a-Co(OH)2, Journal of Alloys and Compounds, Volume 615, 5 December 2014
  • K. De Weerdt, D. Orsáková, M.R. Geiker, The impact of sulphate and magnesium on chloride binding in Portland cement paste, Cement and Concrete Research, Volume 65, November 2014
  • E.M. van der Merwe, C.L. Mathebula, L.C. Prinsloo, Characterization of the surface and physical properties of South African coal fly ash modified by sodium lauryl sulphate (SLS) for applications in PVC composites, Powder Technology, Volume 266, November 2014
  • F. Agrela, M. Cabrera, A.P. Galvín, A. Barbudo, A. Ramirez, Influence of the sulphate content of recycled aggregates on the properties of cement-treated granular materials using Sulphate-Resistant Portland Cement, Construction and Building Materials, Volume 68, 15 October 2014
  • Mariana O.G.P. Bragança, Kleber F. Portella, Marcelle M. Bonato, Cláudia E.B. Marino, Electrochemical impedance behavior of mortar subjected to a sulfate environment – A comparison with chloride exposure models, Construction and Building Materials, Volume 68, 15 October 2014
  • Gajanan Pandey, Supriya Dixit, A.K. Shrivastava, Role of additives; sodium dodecyl sulphate and manganese chloride on morphology of Zn1-xMnxO nanoparticles and their photoluminescence properties, Materials Chemistry and Physics, Volume 147, Issue 3, 15 October 2014
  • Linna Hu, Guangxiu Wang, Rong Cao, Chun Yang, Xi Chen, Fabrication and surface properties of hydrophobic barium sulfate aggregates based on sodium cocoate modification, Applied Surface Science, Volume 315, 1 October 2014
  • Mathias Maes, Nele De Belie, Resistance of concrete and mortar against combined attack of chloride and sodium sulphate, Cement and Concrete Composites, Volume 53, October 2014
  • M.L. Nehdi, A.R. Suleiman, A.M. Soliman, Investigation of concrete exposed to dual sulfate attack, Cement and Concrete Research, Volume 64, October 2014
  • Sina Movaghati, Ali Akbar Moosavi-Movahedi, Fariba Khodagholi, Hadi Digaleh, Ehsan Kachooei, Nader Sheibani, Sodium dodecyl sulphate modulates the fibrillation of human serum albumin in a dose-dependent manner and impacts the PC12 cells retraction, Colloids and Surfaces B: Biointerfaces, Volume 122, 1 October 2014
  • Da-Hai Xia, Yashar Behnamian, Hao-Nan Feng, Hong-Qiang Fan, Li-Xia Yang, Chen Shen, Jing-Li Luo, Yu-Cheng Lu, Stan Klimas, Semiconductivity conversion of Alloy 800 in sulphate, thiosulphate, and chloride solutions, Corrosion Science, Volume 87, October 2014
  • Shiqiang Chen, Peng Wang, Dun Zhang, Corrosion behavior of copper under biofilm of sulfate-reducing bacteria, Corrosion Science, Volume 87, October 2014
  • Yi Liu, Pengran Gao, Xianfu Bu, Guizhi Kuang, Wei Liu, Lixu Lei, Nanocrosses of lead sulphate as the negative active material of lead acid batteries, Journal of Power Sources, Volume 263, 1 October 2014
  • Bryan R. Orellana, David A. Puleo, Tailored sequential drug release from bilayered calcium sulfate composites, Materials Science and Engineering: C, Volume 43, 1 October 2014
  • Ashutosh Sharma, Karabi Das, Hans-J. Fecht, Siddhartha Das, Effect of various additives on morphological and structural characteristics of pulse electrodeposited tin coatings from stannous sulfate electrolyte, Applied Surface Science, Volume 314, 30 September 2014
  • Farhat Abubaker, Cyril Lynsdale, John Cripps, Investigation of concrete–clay interaction with regards to the thaumasite form of sulfate attack, Construction and Building Materials, Volume 67, Part A, 30 September 2014
  • Zanqun Liu, Dehua Deng, Geert De Schutter, Does concrete suffer sulfate salt weathering?, Construction and Building Materials, Volume 66, 15 September 2014
  • Teresa Stryszewska, The change in selected properties of ceramic materials obtained from ceramic brick treated by the sulphate and chloride ions, Construction and Building Materials, Volume 66, 15 September 2014
  • A. Martínez Gabarrón, J.A. Flores Yepes, J.J. Pastor Pérez, J.M. Berná Serna, L.C. Arnold, F.J. Sánchez Medrano, Increase of the flexural strength of construction elements made with plaster (calcium sulfate dihydrate) and common reed (Arundo donax L.), Construction and Building Materials, Volume 66, 15 September 2014