Skip to Page Content

Tin Sulfate Solution

AE Solutions™ SnSO4
CAS 7488-55-3


Product Product Code Request Quote
(2N) 99% Tin Sulfate Solution SN-SAT-02-SOL Request Quote
(3N) 99.9% Tin Sulfate Solution SN-SAT-03-SOL Request Quote
(4N) 99.99% Tin Sulfate Solution SN-SAT-04-SOL Request Quote
(5N) 99.999% Tin Sulfate Solution SN-SAT-05-SOL Request Quote

CHEMICAL
IDENTIFIER
Formula CAS No. PubChem SID PubChem CID MDL No. EC No IUPAC Name Beilstein
Re. No.
SMILES
Identifier
InChI
Identifier
InChI
Key
SnSO4 7488-55-3 24854690 62643 MFCD00011246 N/A Tin(+2) cation sulfate N/A [O-]S(=O)(=O)[O-].[Sn+2] InChI=1S/H2O4S.Sn/c1-5(2,3)4;/h(H2,1,2,3,4);/q;+2/p-2 OBBXFSIWZVFYJR-UHFFFAOYSA-L

PROPERTIES Compound Formula Mol. Wt. Appearance Melting Point Boiling Point Density Exact Mass Monoisotopic Mass Charge MSDS
O4SSn 214.75 White-Yellowish Crystalline Solid 378° C
(712.4° F)
decomposes to SnO2 and SO2 4.15 g/cm3 N/A N/A 0 Safety Data Sheet

Sulfate IonTin Sulfate Solutions are moderate to highly concentrated liquid solutions of Tin Sulfate. They are an excellent source of Tin Sulfate for applications requiring solubilized Compound Solutions Packaging, Bulk Quantity materials. American Elements can prepare dissolved homogenous solutions at customer specified concentrations or to the maximum stoichiometric concentration. Packaging is available in 55 gallon drums, smaller units and larger liquid totes. American Elements maintains solution production facilities in the United States, Northern Europe (Liverpool, UK), Southern Europe (Milan, Italy), Australia and China to allow for lower freight costs and quicker delivery to our customers. .American Elements metal and rare earth compound solutions have numerous applications, but are commonly used in petrochemical cracking and automotive catalysts, water treatment, plating, textiles, research and in optic, laser, crystal and glass applications. Ultra high purity and high purity compositions improve both optical quality and usefulness as scientific standards. Nanoscale elemental powders and suspensions, as alternative high surface area forms, may be considered. We also produce Tin Sulfate Powder.Sulfate compounds are salts or esters of sulfuric acid formed by replacing one or both of the hydrogens with a metal. Most metal sulfate compounds are readily soluble in water for uses such as water treatment, unlike fluorides and oxides which tend to be insoluble. Organometallic forms are soluble in organic solutions and sometimes in both aqueous and organic solutions. Metallic ions can also be dispersed utilizing suspended or coated nanoparticles and deposited utilizing sputtering targets and evaporation materials for uses such as solar cells and fuel cells. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement.

Tin Bohr ModelTin (Sn) atomic and molecular weight, atomic number and elemental symbolTin (atomic symbol: Sn, atomic number: 50) is a Block P, Group 14, Period 5 element with an atomic weight of 118.710. The number of electrons in each of tin's shells is 2, 8, 18, 18, 4 and its electron configuration is [Kr] 4d10 5s2 5p2. The tin atom has a radius of 140.5 pm and a Van der Waals radius of 217 pm.In its elemental form, tin has a silvery-gray metallic appearance. It is malleable, ductile and highly crystalline. High Purity (99.9999%) Tin (Sn) MetalTin has nine stable isotopes and 18 unstable isotopes. Under 3.72 degrees Kelvin, Tin becomes a superconductor. Applications for tin include soldering, plating, and such alloys as pewter. The first uses of tin can be dated to the Bronze Age around 3000 BC in which tin and copper were combined to make the alloy bronze. The origin of the word tin comes from the Latin word Stannum which translates to the Anglo-Saxon word tin. For more information on tin, including properties, safety data, research, and American Elements' catalog of tin products, visit the Tin element page.

Sulfur Bohr ModelSulfur (S) atomic and molecular weight, atomic number and elemental symbolSulfur or Sulphur (atomic symbol: S, atomic number: 16) is a Block P, Group 16, Period 3 element with an atomic radius of 32.066. The number of electrons in each of Sulfur's shells is 2, 8, 6 and its electron configuration is [Ne] 3s2 3p4. In its elemental form, sulfur has a light yellow appearance. The sulfur atom has a covalent radius of 105 pm and a Van der Waals radius of 180 pm. In nature, sulfur can be found in hot springs, meteorites, volcanoes, and as galena, gypsum, and epsom salts. Sulfur has been known since ancient times but was not accepted as an element until 1777, when Antoine Lavoisier helped to convince the scientific community that it was an element and not a compound. For more information on sulfur, including properties, safety data, research, and American Elements' catalog of sulfur products, visit the Sulfur element page.

HEALTH, SAFETY & TRANSPORTATION INFORMATION
Material Safety Data Sheet MSDS
Signal Word Warning
Hazard Statements H315-H319-H335
Hazard Codes Xi
Risk Codes 36/37/38
Safety Precautions 26-36
RTECS Number N/A
Transport Information N/A
WGK Germany nwg
Globally Harmonized System of
Classification and Labelling (GHS)
Exclamation Mark-Acute Toxicity        

TIN SULFATE SYNONYMS
Tin(4+) disulfate, Tin(+2) cation sulfate, Tin(II) sulfate, Stannous sulfate

CUSTOMERS FOR TIN SULFATE SOLUTION HAVE ALSO LOOKED AT
Bismuth Indium Tin Alloy Tin Acetate Tin Metal Tin Oxide Tin Chloride
Tin Pellets Tin Oxide Pellets Gold Tin Alloy Tin Nitrate Tin Acetylacetonate
Tin Foil Tin Rod Tin Nanoparticles Tin Powder Tin Sputtering Target
Show Me MORE Forms of Tin

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums tTypical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis

Recent Research & Development for Tin

  • Formation of an Imino-Stabilized Cyclic Tin(II) Cation from an Amino(imino)stannylene. Ochiai T, Franz D, Irran E, Inoue S. Chemistry. 2015 Mar 12.
  • Synthesis and thermal behavior of tin-based alloy (Sn-Ag-Cu) nanoparticles. Roshanghias A, Yakymovych A, Bernardi J, Ipser H. Nanoscale. 2015 Mar 11.
  • Efficient Conversion of CO2 to CO Using Tin and other Inexpensive and Easily Prepared Post-Transition Metal Catalysts. Medina-Ramos J, Pupillo RC, Keane TP, DiMeglio JL, Rosenthal J. J Am Chem Soc. 2015 Feb 19.
  • Reductive Electropolymerization of a Vinyl-containing Poly-pyridyl Complex on Glassy Carbon and Fluorine-doped Tin Oxide Electrodes. Harrison DP, Carpenter LS, Hyde JT. J Vis Exp. 2015 Jan 30
  • Tissue distribution of indium after repeated intratracheal instillations of indium-tin oxide into the lungs of hamsters. Tanaka A, Hirata M, Matsumura N, Kiyohara Y. J Occup Health. 2015 Jan 10.
  • A Tin-Free Route to trans-Diels-Alder Motifs by Visible Light Photoredox Catalysis. Lee JH, Mho SI. J Org Chem. 2015 Mar 12.
  • Investigation of Fluoroethylene Carbonate Effects on Tin-based Lithium-Ion Battery Electrodes. Yang Z, Gewirth AA, Trahey L. ACS Appl Mater Interfaces. 2015 Mar 5.
  • Sensing sulfur-containing gases using titanium and tin decorated zigzag graphene nanoribbons from first-principles. Abdulkader Tawfik S, Cui XY, Carter DJ, Ringer SP, Stampfl C. Phys Chem Chem Phys. 2015 Feb 25
  • A rational computational study of surface defect-mediated stabilization of low-dimensional Pt nanostructures on TiN(100). Tak YJ, Jang W, Richter NA, Soon A. Phys Chem Chem Phys. 2015 Feb 23.
  • Transition-Metal-Free Coupling Reaction of Vinylcyclopropanes with Aldehydes Catalyzed by Tin Hydride. Ieki R, Kani Y, Tsunoi S, Shibata I. Chemistry. 2015 Mar 5.
  • Dual-Source Dual-Energy CT Angiography of the Supra-Aortic Arteries with Tin Filter: Impact of Tube Voltage Selection. Korn A, Bender B, Schabel C, Bongers M, Ernemann U, Claussen C, Thomas C. Acad Radiol. 2015 Mar 12.
  • Synthesis of cyclic polyesters: effects of alkoxy side chains in salicylaldiminato tin(ii) complexes. Wongmahasirikun P, Prom-On P, Sangtrirutnugul P, Kongsaeree P, Phomphrai K. Dalton Trans. 2015 Mar 10.
  • A novel and green process for the production of tin oxide quantum dots and its application as a photocatalyst for the degradation of dyes from aqueous phase. Bhattacharjee A, Ahmaruzzaman M. J Colloid Interface Sci. 2015 Feb 8
  • Geochemistry of tin (Sn) in Chinese coals. Qu Q, Liu G, Sun R, Kang Y. Environ Geochem Health. 2015 Feb 17.
  • η3 -Allyl Coordination at Tin(II)-Reactivity towards Alkynes and Benzonitrile. Krebs KM, Wiederkehr J, Schneider J, Schubert H, Eichele K, Wesemann L. Angew Chem Int Ed Engl. 2015 Mar 12.
  • Reply to tin and wiwanitkit. Burkle FM. Disaster Med Public Health Prep. 2015 Feb
  • Chemistry of stannylene-based lewis pairs: dynamic tin coordination switching between donor and acceptor character. Krebs KM, Freitag S, Schubert H, Gerke B, Pöttgen R, Wesemann L. Chemistry. 2015 Mar 16
  • Synthesis of silicon-germanium axial nanowire heterostructures in a solvent vapor growth system using indium and tin catalysts. Mullane E, Geaney H, Ryan KM. Phys Chem Chem Phys. 2015 Feb 25
  • Comparison of the enhanced gas sensing properties of tin dioxide samples doped with different catalytic transition elements. Yang F, Guo Z. J Colloid Interface Sci. 2015 Feb 23
  • Hydrothermal treatment for TiN as abrasion resistant dental implant coating and its fibroblast response. Shi X, Xu L, Munar ML, Ishikawa K. Mater Sci Eng C Mater Biol Appl. 2015 Apr

Recent Research & Development for Sulfates

  • Antioxidant activity of high sulfate content derivative of ulvan in hyperlipidemic rats. Qi H, Sun Y. Int J Biol Macromol. 2015 Mar 12.
  • Acidosis Increases MHC Class II-Restricted Presentation of a Protein Endowed with a pH-Dependent Heparan Sulfate-Binding Ability. Knittel D, Savatier A, Upert G, Lortat-Jacob H, Léonetti M. J Immunol. 2015 Mar 9.
  • Pseudoendogenous presence of β-boldenone sulfate and glucuronide in untreated young bulls from the food chain. Chiesa L, Pasquale E, Panseri S, Cannizzo FT, Biolatti B, Pavlovic R, Arioli F. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2015 Mar 13.
  • Hyaluronic acid-chondroitin sulfate: a potential factor to select pure stress urinary incontinence in patients with interstitial cystitis/painful bladder syndrome and mixed incontinence symptoms. Morelli M, Mocciaro R, Venturella R, Albano A, Sacchinelli A, Zullo F. Minerva Ginecol. 2015 Apr
  • Strawberry Phytochemicals Inhibit Azoxymethane/Dextran Sodium Sulfate-Induced Colorectal Carcinogenesis in Crj: CD-1 Mice. Shi N, Clinton SK, Liu Z, Wang Y, Riedl KM, Schwartz SJ, Zhang X, Pan Z, Chen T. Nutrients. 2015 Mar 10
  • Discrepancies in Composition and Biological Effects of Different Formulations of Chondroitin Sulfate. Martel-Pelletier J, Farran A, Montell E, Vergés J, Pelletier JP. Molecules. 2015 Mar 6
  • Amino acid sequence surrounding the chondroitin sulfate attachment site of thrombomodulin regulates chondroitin polymerization. Izumikawa T, Kitagawa H. Biochem Biophys Res Commun. 2015 Mar 12.
  • High-Quality Draft Genome Sequence of Desulfovibrio carbinoliphilus FW-101-2B, an Organic Acid-Oxidizing Sulfate-Reducing Bacterium Isolated from Uranium(VI)-Contaminated Groundwater. Ramsay BD, Hwang C, Woo HL, Carroll SL, Lucas S, Han J, Lapidus AL, Cheng JF, Goodwin LA, Pitluck S, Peters L, Chertkov O, Held B, Detter JC, Han CS, Tapia R, Land ML, Hauser LJ, Kyrpides NC, Ivanova NN, Mikhailova N, Pagani I, Woyke T, Arkin AP, Dehal P, Chivian D, Criddle CS, Wu W, Chakraborty R, Hazen TC, Fields MW. Genome Announc. 2015 Mar 12
  • Heparan sulfate 6-o-sulfotransferase 3 is involved in bone marrow mesenchymal stromal cell osteogenic differentiation. Zhao S, Deng C, Wang Z, Teng L, Chen J. Biochemistry (Mosc). 2015 Mar
  • The role of terahertz polariton absorption in the characterization of crystalline iron sulfate hydrates. Ruggiero MT, Bardon T, Strli M, Taday PF, Korter TM. Phys Chem Chem Phys. 2015 Mar 11.
  • Heparan sulfate-dependent enhancement of henipavirus infection. Mathieu C, Dhondt KP, Châlons M, Mély S, Raoul H, Negre D, Cosset FL, Gerlier D, Vivès RR, Horvat B. MBio. 2015 Mar 10
  • Synthesis of a chondroitin sulfate disaccharide library and a GAG-binding protein interaction analysis. Wakao M, Obata R, Miyachi K, Kaitsubata Y, Kondo T, Sakami C, Suda Y. Bioorg Med Chem Lett. 2015 Feb 27.
  • Stratification of Chondroitin Sulfate Binding Sites in 3D-Model of Bovine Testicular Hyaluronidase and Effective Size of Glycosaminoglycan Coat of the Modified Protein. Maksimenko AV, Turashev AD, Beabealashvili RS. Biochemistry (Mosc). 2015 Mar
  • Chondroitin sulfate-E mediates estrogen-induced osteoanabolism. Koike T, Mikami T, Shida M, Habuchi O, Kitagawa H. Sci Rep. 2015 Mar 11
  • Influence of COD/sulfate ratios on the integrated reactor system for simultaneous removal of carbon, sulfur and nitrogen. Yuan Y, Chen C, Zhao Y, Wang A, Sun D, Huang C, Liang B, Tan W, Xu X, Zhou X, Lee DJ, Ren N. Water Sci Technol. 2015 Mar
  • Polyphenol-rich sorghum brans alter colon microbiota and impact species diversity and species richness after multiple bouts of dextran sodium sulfate-induced colitis. Ritchie LE, Sturino JM, Carroll RJ, Rooney LW, Azcarate-Peril MA, Turner ND. FEMS Microbiol Ecol. 2015 Jan 14.
  • Anaerobic naphthalene degradation by sulfate-reducing Desulfobacteraceae from various anoxic aquifers. Kümmel S, Herbst FA, Bahr A, Duarte M, Pieper DH, Jehmlich N, Seifert J, von Bergen M, Bombach P, Richnow HH, Vogt C. FEMS Microbiol Ecol. 2015 Mar
  • Interaction of the amyloid precursor protein-like protein 1 (APLP1) E2 domain with heparan sulfate involves two distinct binding modes. Dahms SO, Mayer MC, Roeser D, Multhaup G, Than ME. Acta Crystallogr D Biol Crystallogr. 2015 Mar 1
  • A combination of keratan sulfate digestion and rehabilitation promotes anatomical plasticity after rat spinal cord injury. Ishikawa Y, Imagama S, Ohgomori T, Ishiguro N, Kadomatsu K. Neurosci Lett. 2015 Mar 11.
  • Influence of salt type and ionic strength on self-assembly of dextran sulfate-ciprofloxacin nanoplexes. Kutscher M, Cheow WS, Werner V, Lorenz U, Ohlsen K, Meinel L, Hadinoto K, Germershaus O. Int J Pharm. 2015 Mar 12.