Skip to Page Content

Tin Sulfate Solution

AE Solutions™ SnSO4
CAS 7488-55-3

Product Product Code Request Quote
(2N) 99% Tin Sulfate Solution SN-SAT-02-SOL Request Quote
(3N) 99.9% Tin Sulfate Solution SN-SAT-03-SOL Request Quote
(4N) 99.99% Tin Sulfate Solution SN-SAT-04-SOL Request Quote
(5N) 99.999% Tin Sulfate Solution SN-SAT-05-SOL Request Quote

Formula CAS No. PubChem SID PubChem CID MDL No. EC No IUPAC Name Beilstein
Re. No.
SnSO4 7488-55-3 24854690 62643 MFCD00011246 N/A Tin(+2) cation sulfate N/A [O-]S(=O)(=O)[O-].[Sn+2] InChI=1S/H2O4S.Sn/c1-5(2,3)4;/h(H2,1,2,3,4);/q;+2/p-2 OBBXFSIWZVFYJR-UHFFFAOYSA-L

PROPERTIES Compound Formula Mol. Wt. Appearance Melting Point Boiling Point Density Exact Mass Monoisotopic Mass Charge MSDS
O4SSn 214.75 White-Yellowish Crystalline Solid 378° C
(712.4° F)
decomposes to SnO2 and SO2 4.15 g/cm3 N/A N/A 0 Safety Data Sheet

Sulfate IonTin Sulfate Solutions are moderate to highly concentrated liquid solutions of Tin Sulfate. They are an excellent source of Tin Sulfate for applications requiring solubilized Compound Solutions Packaging, Bulk Quantity materials. American Elements can prepare dissolved homogenous solutions at customer specified concentrations or to the maximum stoichiometric concentration. Packaging is available in 55 gallon drums, smaller units and larger liquid totes. American Elements maintains solution production facilities in the United States, Northern Europe (Liverpool, UK), Southern Europe (Milan, Italy), Australia and China to allow for lower freight costs and quicker delivery to our customers. .American Elements metal and rare earth compound solutions have numerous applications, but are commonly used in petrochemical cracking and automotive catalysts, water treatment, plating, textiles, research and in optic, laser, crystal and glass applications. Ultra high purity and high purity compositions improve both optical quality and usefulness as scientific standards. Nanoscale elemental powders and suspensions, as alternative high surface area forms, may be considered. We also produce Tin Sulfate Powder.Sulfate compounds are salts or esters of sulfuric acid formed by replacing one or both of the hydrogens with a metal. Most metal sulfate compounds are readily soluble in water for uses such as water treatment, unlike fluorides and oxides which tend to be insoluble. Organometallic forms are soluble in organic solutions and sometimes in both aqueous and organic solutions. Metallic ions can also be dispersed utilizing suspended or coated nanoparticles and deposited utilizing sputtering targets and evaporation materials for uses such as solar cells and fuel cells. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement.

Tin Bohr ModelTin (Sn) atomic and molecular weight, atomic number and elemental symbolTin (atomic symbol: Sn, atomic number: 50) is a Block P, Group 14, Period 5 element with an atomic weight of 118.710. The number of electrons in each of tin's shells is 2, 8, 18, 18, 4 and its electron configuration is [Kr] 4d10 5s2 5p2. The tin atom has a radius of 140.5 pm and a Van der Waals radius of 217 pm.In its elemental form, tin has a silvery-gray metallic appearance. It is malleable, ductile and highly crystalline. High Purity (99.9999%) Tin (Sn) MetalTin has nine stable isotopes and 18 unstable isotopes. Under 3.72 degrees Kelvin, Tin becomes a superconductor. Applications for tin include soldering, plating, and such alloys as pewter. The first uses of tin can be dated to the Bronze Age around 3000 BC in which tin and copper were combined to make the alloy bronze. The origin of the word tin comes from the Latin word Stannum which translates to the Anglo-Saxon word tin. For more information on tin, including properties, safety data, research, and American Elements' catalog of tin products, visit the Tin element page.

Sulfur Bohr ModelSulfur (S) atomic and molecular weight, atomic number and elemental symbolSulfur or Sulphur (atomic symbol: S, atomic number: 16) is a Block P, Group 16, Period 3 element with an atomic radius of 32.066. The number of electrons in each of Sulfur's shells is 2, 8, 6 and its electron configuration is [Ne] 3s2 3p4. In its elemental form, sulfur has a light yellow appearance. The sulfur atom has a covalent radius of 105 pm and a Van der Waals radius of 180 pm. In nature, sulfur can be found in hot springs, meteorites, volcanoes, and as galena, gypsum, and epsom salts. Sulfur has been known since ancient times but was not accepted as an element until 1777, when Antoine Lavoisier helped to convince the scientific community that it was an element and not a compound. For more information on sulfur, including properties, safety data, research, and American Elements' catalog of sulfur products, visit the Sulfur element page.

Material Safety Data Sheet MSDS
Signal Word Warning
Hazard Statements H315-H319-H335
Hazard Codes Xi
Risk Codes 36/37/38
Safety Precautions 26-36
RTECS Number N/A
Transport Information N/A
WGK Germany nwg
Globally Harmonized System of
Classification and Labelling (GHS)
Exclamation Mark-Acute Toxicity        

Tin(4+) disulfate, Tin(+2) cation sulfate, Tin(II) sulfate, Stannous sulfate

Bismuth Indium Tin Alloy Tin Acetate Tin Metal Tin Oxide Tin Chloride
Tin Pellets Tin Oxide Pellets Gold Tin Alloy Tin Nitrate Tin Acetylacetonate
Tin Foil Tin Rod Tin Nanoparticles Tin Powder Tin Sputtering Target
Show Me MORE Forms of Tin

Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums tTypical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.

Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis

Recent Research & Development for Tin

  • Oxidative Additions of Homoleptic Tin(II) Amidinate. Tomáš Chlupatý, Zde?ka R?ži?ková, Michal Horá?ek, Mercedes Alonso, Frank De Proft, Hana Kampová, Ji?í Brus, and Aleš R?ži?ka. Organometallics: January 28, 2015
  • Efficient Chemisorption of Organophosphorous Redox Probes on Indium Tin Oxide Surfaces under Mild Conditions. Amélie Forget, Benoît Limoges, and Véronique Balland. Langmuir: January 22, 2015
  • Influence of Texture Coefficient on Surface Morphology and Sensing Properties of W-Doped Nanocrystalline Tin Oxide Thin Films. Manjeet Kumar, Akshay Kumar, and A. C. Abhyankar. ACS Appl. Mater. Interfaces: January 20, 2015
  • Using the Thallous Ion Exchange Method to Exchange Tin into High Alumina Zeolites. 1. Crystal Structure of |Sn2+5.3Sn4+0.8Cl–1.8|[Si12Al12O48]-LTA. Jean Marie Vianney Nsanzimana, Cheol Woong Kim, Nam Ho Heo, and Karl Seff. J. Phys. Chem. C: January 16, 2015
  • Water-Dispersible Small Monodisperse Electrically Conducting Antimony-Doped Tin Oxide. Kristina Peters, Patrick Zeller, Goran Stefanic, Volodymyr Skoromets, Hynek N?mec, Petr Kužel, and Dina Fattakhova-Rohlfing. Chem. Mater.: January 9, 2015
  • A Paramagnetic Heterobimetallic Polymer: Synthesis, Reactivity, and Ring-Opening Polymerization of Tin-Bridged Homo- and Heteroleptic Vanadoarenophanes. Holger Braunschweig, Alexander Damme, Serhiy Demeshko, Klaus Dück, Thomas Kramer, Ivo Krummenacher, Franc Meyer, Krzysztof Radacki, Sascha Stellwag-Konertz, and George R. Whittell. J. Am. Chem. Soc.: January 5, 2015
  • Pendant Alkyl and Aryl Groups on Tin Control Complex Geometry and Reactivity with H2/D2 in Pt(SnR3)2(CNBut)2 (R = But, Pri, Ph, Mesityl). Anjaneyulu Koppaka, Lei Zhu, Veeranna Yempally, Derek Isrow, Perry J. Pellechia, and Burjor Captain. J. Am. Chem. Soc.: December 24, 2014
  • Electrochemical Modification of Indium Tin Oxide Using Di(4-nitrophenyl) Iodonium Tetrafluoroborate. Matthew R. Charlton, Kristin J. Suhr, Bradley J. Holliday, and Keith J. Stevenson. Langmuir: December 19, 2014
  • DNA Adsorption by Indium Tin Oxide Nanoparticles. Biwu Liu and Juewen Liu. Langmuir: December 18, 2014
  • Tin and Silicon Binary Oxide on the Carbon Support of a Pt Electrocatalyst with Enhanced Activity and Durability.. Fan Luo, Shijun Liao, Dai Dang, Yan Zheng, Dongwei Xu, Haoxiong Nan, Ting Shu, and Zhiyong Fu. ACS Catal.: December 3, 2014

Recent Research & Development for Sulfates

  • Kinetic study on sodium sulfate synthesis by reactive crystallization. Juan Carlos Ojeda Toro, Izabela Dobrosz-Gomez, and Miguel Ángel Gómez-García. Ind. Eng. Chem. Res.: February 9, 2015
  • Electrophoretic Extraction of Low Molecular Weight Cationic Analytes from Sodium Dodecyl Sulfate Containing Sample Matrices for their Direct Electrospray Ionization Mass Spectrometry. Tristan F Kinde, Debashis Dutta, and Thomas D Lopez. Anal. Chem.: February 9, 2015
  • Novel Colorimetric Immunoassay for Ultrasensitive Monitoring of Brevetoxin B Based on Enzyme-Controlled Chemical Conversion of Sulfite to Sulfate. Wenqiang Lai, Junyang Zhuang, and Dianping Tang. J. Agric. Food Chem.: February 7, 2015
  • Aggregation Behavior of Sodium Lauryl Ether Sulfate with a Positively Bicharged Organic Salt and Effects of the Mixture on Fluorescent Properties of Conjugated Polyelectrolytes. Yongqiang Tang, Zhang Liu, Linyi Zhu, Yuchun Han, and Yilin Wang. Langmuir: February 1, 2015
  • Oxidation of Ferrous Sulfate Hydrolyzed Slurry—Kinetic Aspects and Impact on As(V) Removal. Renaud Daenzer, Thomas Feldmann, and George P. Demopoulos. Ind. Eng. Chem. Res.: January 23, 2015
  • Endosulfan Isomers and Sulfate Metabolite Induced Reproductive Toxicity in Caenorhabditis elegans Involves Genotoxic Response Genes. Hua Du, Min Wang, Hui Dai, Wei Hong, Mudi Wang, Jingjing Wang, Nanyan Weng, Yaguang Nie, and An Xu. Environ. Sci. Technol.: January 22, 2015
  • Solubility of Clopidogrel Hydrogen Sulfate (Form II) in Ethanol + Cyclohexane Mixtures at (283.35 to 333.75) K. Huai Guo, Liangcheng Song, Chunhui Yang, Yu Tao, Yongjun Long, and Yingbei Cui. J. Chem. Eng. Data: January 21, 2015
  • Evaluating Enhanced Sulfate Reduction and Optimized Volatile Fatty Acids (VFA) Composition in Anaerobic Reactor by Fe (III) Addition. Yiwen Liu, Yaobin Zhang, and Bing-Jie Ni. Environ. Sci. Technol.: January 21, 2015
  • Oral Administration of Hen Egg White Ovotransferrin Attenuates the Development of Colitis Induced by Dextran Sodium Sulfate in Mice. Yutaro Kobayashi, Prithy Rupa, Jennifer Kovacs-Nolan, Patricia V. Turner, Toshiro Matsui, and Yoshinori Mine. J. Agric. Food Chem.: January 20, 2015
  • C5-Epimerase and 2-O-Sulfotransferase Associate in Vitro to Generate Contiguous Epimerized and 2-O-Sulfated Heparan Sulfate Domains. Aurélie Préchoux, Célia Halimi, Jean-Pierre Simorre, Hugues Lortat-Jacob, and Cédric Laguri. ACS Chem. Biol.: 42020