Strontium Ferrite

SrFe12O19
CAS 12023-91-5


Product Product Code Order or Specifications
(5N) 99.999% Strontium Ferrite Powder SR-FE-05-P Contact American Elements
(5N) 99.999% Strontium Ferrite Ingot SR-FE-05-I Contact American Elements
(5N) 99.999% Strontium Ferrite Chunk SR-FE-05-CK Contact American Elements
(5N) 99.999% Strontium Ferrite Sputtering Target SR-FE-05-ST Contact American Elements
(5N) 99.999% Strontium Ferrite Lump SR-FE-05-L Contact American Elements

CHEMICAL
IDENTIFIER
Formula CAS No. PubChem SID PubChem CID MDL No. EC No IUPAC Name Beilstein
Re. No.
SMILES
Identifier
InChI
Identifier
InChI
Key
SrFe12O19 12023-91-5 24871679 16213227 MFCD00075632 234-685-4 oxo (oxoferriooxy) iron; oxostrontium N/A O=[Fe]O[Fe]=O.O=
[Fe]O[Fe]=O.O=[Fe]
O[Fe]=O.O=[Fe]
O[Fe]=O.O=[Fe]
O[Fe]=O.O=[Sr]
.O=[Fe]O[Fe]=O
InChI=1S/12Fe.19O.Sr MUDURESJCZWWBG-UHFFFAOYSA-N

PROPERTIES Compound Formula Mol. Wt. Appearance Density

Exact Mass

Monoisotopic Mass Charge MSDS
Fe12O19Sr 1061.75 White Crystalline Solid 5.18 g/cm3 1063.028297 1063.028297 0 Safety Data Sheet

Ferrite StructureStrontium Ferrite is generally immediately available in most volumes. High purity, submicron and nanopowder forms may be considered. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement.

Strontium (Sr) atomic and molecular weight, atomic number and elemental symbolStrontium (atomic symbol: Sr, atomic number: 38) is a Block S, Group 2, Period 5 element with an atomic weight of 87.62 . Strontium Bohr ModelThe number of electrons in each of Strontium's shells is [2, 8, 18, 8, 2] and its electron configuration is [Kr] 5s2. The strontium atom has a radius of 215 pm and a Van der Waals radius of 249 pm. Strontium was discovered by William Cruickshank in 1787 and first isolated by Humphry Davy in 1808. In its elemental form, strontium is a soft, silvery white metallic solid that quickly turns yellow when exposed to air. Elemental Strontium Cathode ray tubes in televisions are made of strontium, which are becoming increasingly displaced by other display technologies; pyrotechnics and fireworks employ strontium salts to achhieve a bright red color. Radioactive isotopes of strontium have been used in radioisotope thermoelectric generators (RTGs) and for certain cancer treatments. In nature, most strontium is found in celestite (as strontium sulfate) and strontianite (as strontium carbonate). Strontium was named after the Scottish town where it was discovered. For more information on strontium, including properties, safety data, research, and American Elements' catalog of strontium products, visit the Strontium Information Center.

Iron (Fe) atomic and molecular weight, atomic number and elemental symbolIron (atomic symbol: Fe, atomic number: 26) is a Block D, Group 8, Period 4 element with an atomic weight of 55.845. The number of electrons in each of Iron's shells is 2, 8, 14, 2 and its electron configuration is [Ar] 3d6 4s2.Iron Bohr Model The iron atom has a radius of 126 pm and a Van der Waals radius of 194 pm. Iron was discovered by humans before 5000 BC. In its elemental form, iron has a lustrous grayish metallic appearance. Elemental Iron Iron is the fourth most common element in the Earth's crust and the most common element by mass forming the earth as a whole. Iron is rarely found as a free element, since it tends to oxidize easily; it is usually found in minerals such as magnetite , hematite, goethite, limonite, or siderite. Though pure iron is typically soft, the addition of carbon creates the alloy known as steel, which is significantly stronger. For more information on iron, including properties, safety data, research, and American Elements' catalog of iron products, visit the Iron Information Center.

HEALTH, SAFETY & TRANSPORTATION INFORMATION
Material Safety Data Sheet MSDS
Signal Word Warning
Hazard Statements H319
Hazard Codes Xi
Risk Codes 36
Safety Precautions 26-36
RTECS Number N/A
Transport Information N/A
WGK Germany 3
Globally Harmonized System of
Classification and Labelling (GHS)
Exclamation Mark-Acute Toxicity        

STRONTIUM FERRITE SYNONYMS
Strontium iron oxide, Strontium ferrate, Strontium dodecairon nonadecaoxide

CUSTOMERS FOR STRONTIUM FERRITE HAVE ALSO LOOKED AT
Strontium Acetylacetonate Strontium Oxide Nanopowder Strontium Wire Strontium Powder Strontium Acetate
Strontium Nitrate Strontium Sputtering Target Strontium Chloride Strontium Foil Strontium Metal
Strondium Oxide Pellet Lanthanum Strontium Chromite Aluminum Strontium Alloy Strontium Pellets Strontium Oxide
Show Me MORE Forms of Strontium

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis





German   Korean   French   Japanese   Spanish   Chinese (Simplified)   Portuguese   Russian   Chinese (Taiwan)  Italian   Turkish   Polish   Dutch   Czech   Swedish   Hungarian   Danish   Hebrew

Production Catalog Available in 36 Countries & Languages


Recent Research & Development for Strontium

  • Narendar Nasani, Devaraj Ramasamy, Isabel Antunes, Budhendra Singh, Duncan P. Fagg, Structural and electrical properties of strontium substituted Y2BaNiO5, Journal of Alloys and Compounds, Volume 620, 25 January 2015
  • Wolfgang Rheinheimer, Michael Bäurer, Harry Chien, Gregory S. Rohrer, Carol A. Handwerker, John E. Blendell, Michael J. Hoffmann, The equilibrium crystal shape of strontium titanate and its relationship to the grain boundary plane distribution, Acta Materialia, Volume 82, 1 January 2015
  • Leliang Li, Jun Zheng, Yuhua Zuo, Buwen Cheng, Qiming Wang, Efficient 1.54-µm emission through Eu2+ sensitization of Er3+ in thin films of Eu2+/Er3+ codoped barium strontium silicate under broad ultraviolet light excitation, Journal of Luminescence, Volume 157, January 2015
  • Agata Bialy, Peter B. Jensen, Didier Blanchard, Tejs Vegge, Ulrich J. Quaade, Solid solution barium–strontium chlorides with tunable ammonia desorption properties and superior storage capacity, Journal of Solid State Chemistry, Volume 221, January 2015
  • Poonam Pahuja, R.K. Kotnala, R.P. Tandon, Effect of rare earth substitution on properties of barium strontium titanate ceramic and its multiferroic composite with nickel cobalt ferrite, Journal of Alloys and Compounds, Volume 617, 25 December 2014
  • Muhammad Naeem Ashiq, Raheela Beenish Qureshi, Muhammad Aslam Malana, Muhammad Fahad Ehsan, Synthesis, structural, magnetic and dielectric properties of zirconium copper doped M-type calcium strontium hexaferrites, Journal of Alloys and Compounds, Volume 617, 25 December 2014
  • Ding Rong Ou, Mojie Cheng, Stability of manganese-oxide-modified lanthanum strontium cobaltite in the presence of chromia, Journal of Power Sources, Volume 272, 25 December 2014
  • Li Wang, P. Zhang, M.H. Habibi, Jeffrey I. Eldridge, S.M. Guo, Infrared radiative properties of plasma-sprayed strontium zirconate, Materials Letters, Volume 137, 15 December 2014
  • Boxun Hu, Manoj K. Mahapatra, Michael Keane, Heng Zhang, Prabhakar Singh, Effect of CO2 on the stability of strontium doped lanthanum manganite cathode, Journal of Power Sources, Volume 268, 5 December 2014
  • Hui Fan, Michael Keane, Prabhakar Singh, Minfang Han, Electrochemical performance and stability of lanthanum strontium cobalt ferrite oxygen electrode with gadolinia doped ceria barrier layer for reversible solid oxide fuel cell, Journal of Power Sources, Volume 268, 5 December 2014

Recent Research & Development for Ferrites

  • J. Xu, D.H. Ji, Z.Z. Li, W.H. Qi, G.D. Tang, Z.F. Shang, X.Y. Zhang, Magnetic moments of Ti cations in Ti-doped Ni0.68Fe2.32O4 spinel ferrites, Journal of Alloys and Compounds, Volume 619, 15 January 2015
  • Z. Karoly, J. Szepvolgyi, W. Kaszuwara, O. Łabędź, M. Bystrzejewski, Influence of ferrite stabilizing elements and Co on structure and magnetic properties of carbon-encapsulated iron nanoparticles synthesized in thermal plasma jet, Journal of Alloys and Compounds, Volume 619, 15 January 2015
  • Ghulam Mustafa, M.U. Islam, Wenli Zhang, Yasir Jamil, Abdul Waheed Anwar, Mudassar Hussain, Mukhtar Ahmad, Investigation of structural and magnetic properties of Ce3+-substituted nanosized Co–Cr ferrites for a variety of applications, Journal of Alloys and Compounds, Volume 618, 5 January 2015
  • Archana Singh, Ajendra Singh, Satyendra Singh, Poonam Tandon, B.C. Yadav, R.R. Yadav, Synthesis, characterization and performance of zinc ferrite nanorods for room temperature sensing applications, Journal of Alloys and Compounds, Volume 618, 5 January 2015
  • A.D. Warren, R.L. Harniman, A.M. Collins, S.A. Davis, C.M. Younes, P.E.J. Flewitt, T.B. Scott, Comparison between magnetic force microscopy and electron back-scatter diffraction for ferrite quantification in type 321 stainless steel, Ultramicroscopy, Volume 148, January 2015
  • Poonam Pahuja, R.K. Kotnala, R.P. Tandon, Effect of rare earth substitution on properties of barium strontium titanate ceramic and its multiferroic composite with nickel cobalt ferrite, Journal of Alloys and Compounds, Volume 617, 25 December 2014
  • Wei Cai, Chunlin Fu, Rongli Gao, Weihai Jiang, Xiaoling Deng, Gang Chen, Photovoltaic enhancement based on improvement of ferroelectric property and band gap in Ti-doped bismuth ferrite thin films, Journal of Alloys and Compounds, Volume 617, 25 December 2014
  • Liang Wang, Yang Bai, Lijie Qiao, Low loss and high refractive index in impedance-matched ferrite–silver co-fired ceramics, Journal of Alloys and Compounds, Volume 617, 25 December 2014
  • Irshad Ali, Nasira Shaheen, M.U. Islam, Muhammad Irfan, Muhammad Naeem Ashiq, M. Asif Iqbal, Aisha Iftikhar, Study of electrical and dielectric behavior of Tb+3 substituted Y-type hexagonal ferrite, Journal of Alloys and Compounds, Volume 617, 25 December 2014
  • Wenjuan Wang, Qingli Hao, Wu Lei, Xifeng Xia, Xin Wang, Ternary nitrogen-doped graphene/nickel ferrite/polyaniline nanocomposites for high-performance supercapacitors, Journal of Power Sources, Volume 269, 10 December 2014