Strontium Titanate (Bismuth Doped)

Linear Formula:

Bi:SrTiO3

MDL Number:

N/A

EC No.:

N/A

ORDER

PRODUCT Product Code ORDER SAFETY DATA TECHNICAL DATA
(2N) 99% Strontium Titanate (Bismuth Doped)
SRTIO-BID-02-C
Pricing > SDS > Data Sheet >
(3N) 99.9% Strontium Titanate (Bismuth Doped)
SRTIO-BID-03-C
Pricing > SDS > Data Sheet >
(4N) 99.99% Strontium Titanate (Bismuth Doped)
SRTIO-BID-04-C
Pricing > SDS > Data Sheet >
(5N) 99.999% Strontium Titanate (Bismuth Doped)
SRTIO-BID-05-C
Pricing > SDS > Data Sheet >

Strontium Titanate (Bismuth Doped) Properties (Theoretical)

Compound Formula BiSrTiO3
Appearance Crystalline solid in various forms (wafer, sputtering target, powder, pieces)
Melting Point 2080 °C
Boiling Point N/A
Density 5.175 g/cm3
Solubility in H2O Insoluble
Thermal Conductivity 0.07 - 0.1 Ω·cm (0.05 wt% Nb)
Thermal Expansion 10.4 x10-6/ °C

Strontium Titanate (Bismuth Doped) Health & Safety Information

Signal Word N/A
Hazard Statements N/A
Hazard Codes N/A
RTECS Number N/A
Transport Information N/A
MSDS / SDS

About Strontium Titanate (Bismuth Doped)

Titanate IonBismuth-Doped Strontium Titanate is a crystalline solid used as a semiconductor and in photo optic applications. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement.

Strontium Titanate (Bismuth Doped) Synonyms

Bismuth-strontium titanate, Strontium bismuth titanium oxide, Strontium titanium trioxide doped with bismuth, Bi-doped SrTiO3; Bi:SrTiO3, Sr1−1.5xBixTiO3, SrBi4Ti4O15, SBT, Bi-Sr-Ti-O

Chemical Identifiers

Linear Formula Bi:SrTiO3
MDL Number N/A
EC No. N/A
Pubchem CID 92025655
IUPAC Name bismuth; strontium; oxotitanium
SMILES InChI=1S/Bi.O.Sr.Ti/q+3;;+2;
InchI Identifier O=[Ti].[Sr+2].[Bi+3]
InchI Key IRXYMUWMSMSGSI-UHFFFAOYSA-N

Packaging Specifications

Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Safety Data Sheet (SDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes, and 36,000 lb. tanker trucks.

Related Elements

Bismuth

See more Bismuth products. Bismuth (atomic symbol: Bi, atomic number: 83) is a Block P, Group 15, Period 6 element with an atomic radius of 208.98040. The number of electrons in each of Bismuth's shells is 2, 8, 18, 32, 18, 5 and its electron configuration is [Xe] 4f14 5d10 6s2 6p3. Bismuth Bohr ModelThe bismuth atom has a radius of 156 pm and a Van der Waals radius of 207 pm. In its elemental form, bismuth is a silvery white brittle metal. Bismuth is the most diamagnetic of all metals and, with the exception of mercury, its thermal conductivity is lower than any other metal. Elemental BismuthBismuth has a high electrical resistance, and has the highest Hall Effect of any metal (i.e., greatest increase in electrical resistance when placed in a magnetic field). Bismuth is found in bismuthinite and bismite. It is also produced as a byproduct of lead, copper, tin, molybdenum and tungsten extraction. Bismuth was first discovered by Early Man. The name Bismuth originates from the German word 'wissmuth,' meaning white mass.

Strontium

See more Strontium products. Strontium (atomic symbol: Sr, atomic number: 38) is a Block S, Group 2, Period 5 element with an atomic weight of 87.62 . Strontium Bohr ModelThe number of electrons in each of Strontium's shells is [2, 8, 18, 8, 2] and its electron configuration is [Kr] 5s2. The strontium atom has a radius of 215 pm and a Van der Waals radius of 249 pm. Strontium was discovered by William Cruickshank in 1787 and first isolated by Humphry Davy in 1808. In its elemental form, strontium is a soft, silvery white metallic solid that quickly turns yellow when exposed to air. Elemental StrontiumCathode ray tubes in televisions are made of strontium, which are becoming increasingly displaced by other display technologies pyrotechnics and fireworks employ strontium salts to achieve a bright red color. Radioactive isotopes of strontium have been used in radioisotope thermoelectric generators (RTGs) and for certain cancer treatments. In nature, most strontium is found in celestite (as strontium sulfate) and strontianite (as strontium carbonate). Strontium was named after the Scottish town where it was discovered.

Titanium

See more Titanium products. Titanium (atomic symbol: Ti, atomic number: 22) is a Block D, Group 4, Period 4 element with an atomic weight of 47.867. The number of electrons in each of Titanium's shells is [2, 8, 10, 2] and its electron configuration is [Ar] 3d2 4s2. Titanium Bohr ModelThe titanium atom has a radius of 147 pm and a Van der Waals radius of 187 pm. Titanium was discovered by William Gregor in 1791 and first isolated by Jöns Jakob Berzelius in 1825. In its elemental form, titanium has a silvery grey-white metallic appearance. Titanium's properties are chemically and physically similar to zirconium, both of which have the same number of valence electrons and are in the same group in the periodic table. Elemental TitaniumTitanium has five naturally occurring isotopes: 46Ti through 50Ti, with 48Ti being the most abundant (73.8%). Titanium is found in igneous rocks and the sediments derived from them. It is named after the word Titanos, which is Greek for Titans.

TODAY'S TOP DISCOVERY!

March 28, 2024
Los Angeles, CA
Each business day American Elements' scientists & engineers post their choice for the most exciting materials science news of the day
University of Michigan researchers develop new fabrication process for helical metal nanoparticles

University of Michigan researchers develop new fabrication process for helical metal nanoparticles