Bismuth Telluride

Bi2Te3
CAS 1304-82-1


Product Product Code Order or Specifications
(5N) 99.999% Bismuth Telluride Powder BI-TE-05-P Contact American Elements
(5N) 99.999% Bismuth Telluride Ingot BI-TE-05-I Contact American Elements
(5N) 99.999% Bismuth Telluride Chunk BI-TE-05-CK Contact American Elements
(5N) 99.999% Bismuth Telluride Lump BI-TE-05-L Contact American Elements
(5N) 99.999% Bismuth Telluride Disc BI-TE-05-D Contact American Elements
(5N) 99.999% Bismuth Telluride Sputtering Target BI-TE-05-ST Contact American Elements
(5N) 99.999% Bismuth Telluride Plate BI-TE-05-PL Contact American Elements
(5N) 99.999% Bismuth Telluride Wafer BI-TE-05-WSX Contact American Elements

CHEMICAL
IDENTIFIER
Formula CAS No. PubChem CID MDL No. EC No IUPAC Name Beilstein
Re. No.
SMILES
Identifier
InChI
Identifier
InChI
Key
Bi2Te3 1304-82-1 6379155 MFCD00014201 215-135-2 tellanylidenebismuth; tellurium N/A [Te].[Te]=
[Bi].[Te]=[Bi]
InChI=1S/2Bi.3Te GUYIRKJSQUOSJV-UHFFFAOYSA-N

PROPERTIES Compound Formula Mol. Wt. Appearance Melting Point Boiling Point Density

Exact Mass

Monoisotopic Mass Charge MSDS
Bi2Te3 800.76 Gray or black solid 585 °C
(1085 °F)
N/A 7.64-7.74 g/cm3 801.674797 807.679471 0 Safety Data Sheet

Telluride IonBismuth Telluride is a narrow gap layered semiconductor with high thermal conductivity. Recent research has confirmed that bismuth telluride may significantly increase the speed of microchips and be the basis for the emerging next generation technology know as "Spintronics". American Elements Bismuth Telluride products are generally available in most volumes and can be purchased in bulk quantites. American Elements can produce most materials in high purity and ultra high purity (up to 99.99999%) forms and follows applicable ASTM testing standards; a range of grades are available including Mil Spec (military grade), ACS, Reagent and Technical Grade, Food, Agricultural and Pharmaceutical Grade, Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia). We can also produce materials to custom specifications by request, in addition to custom compositions for commercial and research applications and new proprietary technologies. Typical and custom packaging is available, as is additional research, technical and safety (MSDS) data. Please contact us above for information on specifications, lead time and pricing.

Bismuth (Bi) atomic and molecular weight, atomic number and elemental symbol Bismuth (atomic symbol: Bi, atomic number: 83) is a Block P, Group 15, Period 6 element with an atomic radius of 208.98040(. The number of electrons in each of Bismuth's shells is 2, 8, 18, 32, 18, 5 and its electron configuration is [Xe] 4f14 5d10 6s2 6p3. Bismuth Bohr ModelThe bismuth atom has a radius of 156 pm and a Van der Waals radius of 207 pm. In its elemental form, bismuth is a silvery white brittle metal. Bismuth is the most diamagnetic of all metals and, with the exception of mercury, its thermal conductivity is lower than any other metal. Elemental Bismuth Bismuth has a high electrical resistance, and has the highest Hall Effect of any metal (i.e., greatest increase in electrical resistance when placed in a magnetic field). Bismuth is found in bismuthinite and bismite It is also produced as a byproduct of lead, copper, tin, molybdenum and tungsten extraction. Bismuth was first discovered by Early Man. The name Bismuth originates from the German word 'wissmuth,' meaning white mass. For more information on bismuth, including properties, safety data, research, and American Elements' catalog of bismuth products, visit the Bismuth Information Center.

Tellurium Bohr ModelTellurium (Te) atomic and molecular weight, atomic number and elemental symbolTellurium (atomic symbol: Te, atomic number: 52) is a Block P, Group 16, Period 5 element with an atomic radius of 127.60. The number of electrons in each of tellurium's shells is 2, 8, 18, 18, 6 and its electron configuration is [Kr] 4d10 5s2 5p4. Tellurium was discovered by Franz Muller von Reichenstein in 1782 and first isolated by Martin Heinrich Klaproth in 1798. In its elemental form, tellurium has a silvery lustrous gray appearance.Elemental Tellurium The tellurium atom has a radius of 140 pm and a Van der Waals radius of 206 pm. Tellurium is most commonly sourced from the anode sludges produced as a byproduct of copper refining. The name Tellurium originates from the Greek word 'Tellus' meaning Earth. For more information on tellurium, including properties, safety data, research, and American Elements' catalog of tellurium products, visit the Tellurium Information Center.


HEALTH, SAFETY & TRANSPORTATION INFORMATION
Material Safety Data Sheet MSDS
Signal Word Warning
Hazard Statements H302-H312-H315-H319-H332-H335
Hazard Codes N/A
Risk Codes N/A
Safety Precautions N/A
RTECS Number N/A
Transport Information N/A
WGK Germany 3
Globally Harmonized System of
Classification and Labelling (GHS)
Exclamation Mark-Acute Toxicity        

BISMUTH TELLURIDE SYNONYMS
Dibismuth tritelluride, Bismuth(III) telluride, Bismuth sesquitelluride, Bismuth tritelluride

CUSTOMERS FOR BISMUTH TELLURIDE HAVE ALSO LOOKED AT
Show Me MORE Forms of Bismuth

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis





German   Korean   French   Japanese   Spanish   Chinese (Simplified)   Portuguese   Russian   Chinese (Taiwan)  Italian   Turkish   Polish   Dutch   Czech   Swedish   Hungarian   Danish   Hebrew

Production Catalog Available in 36 Countries & Languages


Recent Research & Development for Bismuth

  • Wei Cai, Chunlin Fu, Rongli Gao, Weihai Jiang, Xiaoling Deng, Gang Chen, Photovoltaic enhancement based on improvement of ferroelectric property and band gap in Ti-doped bismuth ferrite thin films, Journal of Alloys and Compounds, Volume 617, 25 December 2014
  • Wislei R. Osório, Ausdinir D. Bortolozo, Leandro C. Peixoto, Amauri Garcia, Mechanical performance and microstructure array of as-cast lead–silver and lead–bismuth alloys, Journal of Power Sources, Volume 271, 20 December 2014
  • Phuoc Huu Le, Chien-Neng Liao, Chih Wei Luo, Jihperng Leu, Thermoelectric properties of nanostructured bismuth–telluride thin films grown using pulsed laser deposition, Journal of Alloys and Compounds, Volume 615, 5 December 2014,
  • Guangzhi Dong, Huiqing Fan, Pengrong Ren, Xiao Liu, Hole conduction and nonlinear current–voltage behavior in multiferroic lanthanum-substituted bismuth ferrite, Journal of Alloys and Compounds, Volume 615, 5 December 2014
  • Jorge Omar Gil Posada, Peter J. Hall, Post-hoc comparisons among iron electrode formulations based on bismuth, bismuth sulphide, iron sulphide, and potassium sulphide under strong alkaline conditions, Journal of Power Sources, Volume 268, 5 December 2014
  • Bing Han, Jie Zhang, Pengju Li, Jianliang Li, Yang Bian, Hengzhen Shi, A novel orange emitting bismuth molybdate based phosphor, Ceramics International, Volume 40, Issue 10, Part B, December 2014
  • Yunhui Yan, Zhaoxian Zhou, Xiaohua Zhao, Jianguo Zhou, A controlled anion exchange strategy to synthesize core-shell β-bismuth oxide/bismuth sulfide hollow heterostructures with enhanced visible-light photocatalytic activity, Journal of Colloid and Interface Science, Volume 435, 1 December 2014
  • Chao Wang, Gehong Zhang, Chao Zhang, Miaomiao Wu, Ming Yan, Weiqiang Fan, Weidong Shi, A facile one-step solvothermal synthesis of bismuth phosphate–graphene nanocomposites with enhanced photocatalytic activity, Journal of Colloid and Interface Science, Volume 435, 1 December 2014
  • K. Swapna, Sk. Mahamuda, A. Srinivasa Rao, T. Sasikala, P. Packiyaraj, L. Rama Moorthy, G. Vijaya Prakash, Luminescence characterization of Eu3+ doped Zinc Alumino Bismuth Borate glasses for visible red emission applications, Journal of Luminescence, Volume 156, December 2014
  • K. Swapna, Sk. Mahamuda, A. Srinivasa Rao, M. Jayasimhadri, Suman Shakya, G. Vijaya Prakash, Tb3+ doped Zinc Alumino Bismuth Borate glasses for green emitting luminescent devices, Journal of Luminescence, Volume 156, December 2014

Recent Research & Development for Tellurides

  • Won-Yong Lee, No-Won Park, Ji-Eun Hong, Soon-Gil Yoon, Jung-Hyuk Koh, Sang-Kwon Lee, Effect of electronic contribution on temperature-dependent thermal transport of antimony telluride thin film, Journal of Alloys and Compounds, Volume 620, 25 January 2015
  • Xiaokang Fan, Kefeng Li, Xia Li, Peiwen Kuan, Xin Wang, Lili Hu, Spectroscopic properties of 2.7 μm emission in Er3+ doped telluride glasses and fibers, Journal of Alloys and Compounds, Volume 615, 5 December 2014
  • Phuoc Huu Le, Chien-Neng Liao, Chih Wei Luo, Jihperng Leu, Thermoelectric properties of nanostructured bismuth–telluride thin films grown using pulsed laser deposition, Journal of Alloys and Compounds, Volume 615, 5 December 2014
  • Philippe Gall, Thierry Guizouarn, Michel Potel, Patrick Gougeon, Synthesis, crystal structure, and electrical and magnetic properties of BaMo6Te6: A novel reduced molybdenum telluride containing infinite chains of trans-face shared Mo6 octahedra, Journal of Solid State Chemistry, Volume 220, December 2014
  • Masayuki Takashiri, Kazuo Imai, Masato Uyama, Harutoshi Hagino, Saburo Tanaka, Koji Miyazaki, Yoshitake Nishi, Effects of homogeneous irradiation of electron beam on crystal growth and thermoelectric properties of nanocrystalline bismuth selenium telluride thin films, Journal of Alloys and Compounds, Volume 612, 5 November 2014
  • Tobias Rosenthal, Simon Welzmiller, Lukas Neudert, Philipp Urban, Andy Fitch, Oliver Oeckler, Novel superstructure of the rocksalt type and element distribution in germanium tin antimony tellurides, Journal of Solid State Chemistry, Volume 219, November 2014
  • Zhenzhou Rong, Xi'an Fan, Fan Yang, Xinzhi Cai, Guangqiang Li, Microwave activated hot pressing: A new consolidation technique and its application to fine crystal bismuth telluride based compounds, Powder Technology, Volume 267, November 2014
  • Bárbara Tirloni, Adelheid Hagenbach, Ernesto Schulz Lang, Ulrich Abram, Thiocarbamoylbenzimidophenylselenide and -telluride and their reactions with metal ions, Polyhedron, Volume 79, 5 September 2014
  • Zhenyu Zhang, Nengdong Duan, Bo Wang, Yanxia Huo, Bi Zhang, Xianzhong Zhang, Fei Ye, Deformation and crack mechanisms of nanotwinned cadmium telluride under cyclic nanoindentations, Scripta Materialia, Available online 3 September 2014
  • M.J. Winiarski, M. Samsel-Czekała, A. Ciechan, Strain effects on electronic structure and superconductivity in the iron telluride, Intermetallics, Volume 52, September 2014