Bismuth Telluride

Bi2Te3
CAS 1304-82-1


Product Product Code Order or Specifications
(5N) 99.999% Bismuth Telluride Powder BI-TE-05-P Contact American Elements
(5N) 99.999% Bismuth Telluride Ingot BI-TE-05-I Contact American Elements
(5N) 99.999% Bismuth Telluride Chunk BI-TE-05-CK Contact American Elements
(5N) 99.999% Bismuth Telluride Lump BI-TE-05-L Contact American Elements
(5N) 99.999% Bismuth Telluride Disc BI-TE-05-D Contact American Elements
(5N) 99.999% Bismuth Telluride Sputtering Target BI-TE-05-ST Contact American Elements
(5N) 99.999% Bismuth Telluride Plate BI-TE-05-PL Contact American Elements
(5N) 99.999% Bismuth Telluride Wafer BI-TE-05-WSX Contact American Elements

CHEMICAL
IDENTIFIER
Formula CAS No. PubChem CID MDL No. EC No IUPAC Name Beilstein
Re. No.
SMILES
Identifier
InChI
Identifier
InChI
Key
Bi2Te3 1304-82-1 6379155 MFCD00014201 215-135-2 tellanylidenebismuth; tellurium N/A [Te].[Te]=
[Bi].[Te]=[Bi]
InChI=1S/2Bi.3Te GUYIRKJSQUOSJV-UHFFFAOYSA-N

PROPERTIES Compound Formula Mol. Wt. Appearance Melting Point Boiling Point Density

Exact Mass

Monoisotopic Mass Charge MSDS
Bi2Te3 800.76 Gray or black solid 585 °C
(1085 °F)
N/A 7.64-7.74 g/cm3 801.674797 807.679471 0 Safety Data Sheet

Telluride IonBismuth Telluride is a narrow gap layered semiconductor with high thermal conductivity. Recent research has confirmed that bismuth telluride may significantly increase the speed of microchips and be the basis for the emerging next generation technology know as "Spintronics". American Elements Bismuth Telluride products are generally available in most volumes and can be purchased in bulk quantites. American Elements can produce most materials in high purity and ultra high purity (up to 99.99999%) forms and follows applicable ASTM testing standards; a range of grades are available including Mil Spec (military grade), ACS, Reagent and Technical Grade, Food, Agricultural and Pharmaceutical Grade, Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia). We can also produce materials to custom specifications by request, in addition to custom compositions for commercial and research applications and new proprietary technologies. Typical and custom packaging is available, as is additional research, technical and safety (MSDS) data. Please contact us above for information on specifications, lead time and pricing.

Bismuth (Bi) atomic and molecular weight, atomic number and elemental symbol Bismuth (atomic symbol: Bi, atomic number: 83) is a Block P, Group 15, Period 6 element with an atomic radius of 208.98040(. The number of electrons in each of Bismuth's shells is 2, 8, 18, 32, 18, 5 and its electron configuration is [Xe] 4f14 5d10 6s2 6p3. Bismuth Bohr ModelThe bismuth atom has a radius of 156 pm and a Van der Waals radius of 207 pm. In its elemental form, bismuth is a silvery white brittle metal. Bismuth is the most diamagnetic of all metals and, with the exception of mercury, its thermal conductivity is lower than any other metal. Elemental Bismuth Bismuth has a high electrical resistance, and has the highest Hall Effect of any metal (i.e., greatest increase in electrical resistance when placed in a magnetic field). Bismuth is found in bismuthinite and bismite It is also produced as a byproduct of lead, copper, tin, molybdenum and tungsten extraction. Bismuth was first discovered by Early Man. The name Bismuth originates from the German word 'wissmuth,' meaning white mass. For more information on bismuth, including properties, safety data, research, and American Elements' catalog of bismuth products, visit the Bismuth Information Center.

Tellurium Bohr ModelTellurium (Te) atomic and molecular weight, atomic number and elemental symbolTellurium (atomic symbol: Te, atomic number: 52) is a Block P, Group 16, Period 5 element with an atomic radius of 127.60. The number of electrons in each of tellurium's shells is 2, 8, 18, 18, 6 and its electron configuration is [Kr] 4d10 5s2 5p4. Tellurium was discovered by Franz Muller von Reichenstein in 1782 and first isolated by Martin Heinrich Klaproth in 1798. In its elemental form, tellurium has a silvery lustrous gray appearance.Elemental Tellurium The tellurium atom has a radius of 140 pm and a Van der Waals radius of 206 pm. Tellurium is most commonly sourced from the anode sludges produced as a byproduct of copper refining. The name Tellurium originates from the Greek word 'Tellus' meaning Earth. For more information on tellurium, including properties, safety data, research, and American Elements' catalog of tellurium products, visit the Tellurium Information Center.


HEALTH, SAFETY & TRANSPORTATION INFORMATION
Material Safety Data Sheet MSDS
Signal Word Warning
Hazard Statements H302-H312-H315-H319-H332-H335
Hazard Codes N/A
Risk Codes N/A
Safety Precautions N/A
RTECS Number N/A
Transport Information N/A
WGK Germany 3
Globally Harmonized System of
Classification and Labelling (GHS)
Exclamation Mark-Acute Toxicity        

BISMUTH TELLURIDE SYNONYMS
Dibismuth tritelluride, Bismuth(III) telluride, Bismuth sesquitelluride, Bismuth tritelluride

CUSTOMERS FOR BISMUTH TELLURIDE HAVE ALSO LOOKED AT
Show Me MORE Forms of Bismuth

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis





German   Korean   French   Japanese   Spanish   Chinese (Simplified)   Portuguese   Russian   Chinese (Taiwan)  Italian   Turkish   Polish   Dutch   Czech   Swedish   Hungarian   Danish   Hebrew

Production Catalog Available in 36 Countries & Languages


Recent Research & Development for Bismuth

  • Phuoc Huu Le, Chien-Neng Liao, Chih Wei Luo, Jihperng Leu, Thermoelectric properties of nanostructured bismuth–telluride thin films grown using pulsed laser deposition, Journal of Alloys and Compounds, Volume 615, 5 December 2014
  • Guangzhi Dong, Huiqing Fan, Pengrong Ren, Xiao Liu, Hole conduction and nonlinear current–voltage behavior in multiferroic lanthanum-substituted bismuth ferrite, Journal of Alloys and Compounds, Volume 615, 5 December 2014
  • Jorge Omar Gil Posada, Peter J. Hall, Post-hoc comparisons among iron electrode formulations based on bismuth, bismuth sulphide, iron sulphide, and potassium sulphide under strong alkaline conditions, Journal of Power Sources, Volume 268, 5 December 2014
  • Xiaohua Zhang, Wei Ren, Feng Xin, Peng Shi, Structures and electric properties of cubic bismuth based pyrochlore thin films grown by pulsed laser deposition, Journal of Alloys and Compounds, Volume 614, 25 November 2014
  • Masayuki Takashiri, Kazuo Imai, Masato Uyama, Harutoshi Hagino, Saburo Tanaka, Koji Miyazaki, Yoshitake Nishi, Effects of homogeneous irradiation of electron beam on crystal growth and thermoelectric properties of nanocrystalline bismuth selenium telluride thin films, Journal of Alloys and Compounds, Volume 612, 5 November 2014
  • Wang Wei, Ning Pingfan, Fang Jinglu, Wang Weixing, Mechanism of dielectric nonlinear characteristics in bismuth-based cubic pyrochlores, Ceramics International, Volume 40, Issue 9, Part A, November 2014
  • Y. Saddeek, H. Shokry Hassan, G. Abd elfadeel, Fabrication and analysis of new bismuth borate glasses containing cement kiln dust, Journal of Non-Crystalline Solids, Volume 403, 1 November 2014
  • C. Karunakaran, S. Kalaivani, Enhanced visible light-photocatalysis by hydrothermally synthesized thallium-doped bismuth vanadate nanoparticles, Materials Science in Semiconductor Processing, Volume 27, November 2014
  • Zhenzhou Rong, Xi'an Fan, Fan Yang, Xinzhi Cai, Guangqiang Li, Microwave activated hot pressing: A new consolidation technique and its application to fine crystal bismuth telluride based compounds, Powder Technology, Volume 267, November 2014
  • Lingxia Li, Dan Xu, Shihui Yu, Helei Dong, Yuxin Jin, Haoran Zheng, Effect of substrate on the dielectric properties of bismuth magnesium niobate thin films prepared by RF magnetron sputtering, Vacuum, Volume 109, November 2014
  • Suyuan Zeng, Rongfeng Tang, Shengxia Duan, Lei Li, Caihua Liu, Xianli Gu, Saisai Wang, Dezhi Sun, Kinetically controlled synthesis of bismuth tungstate with different structures by a NH4F assisted hydrothermal method and surface-dependent photocatalytic properties, Journal of Colloid and Interface Science, Volume 432, 15 October 2014
  • Qing Liao, Yanjie Wang, Yan Chen, Yanying Wei, Haihui Wang, Novel bifunctional tantalum and bismuth co-doped perovskite BaBi0.05Co0.8Ta0.15O3-d with high oxygen permeation, Journal of Membrane Science, Volume 468, 15 October 2014
  • Dong Hoon Son, Bok Hyeon Kim, Seung Ho Lee, Seongjae Boo, Won-Taek Han, Ultra-broadband near-infrared emission in bismuth borosilicate glasses incorporated with Er3 +, Tm3 +, and Yb3 + ions, Journal of Non-Crystalline Solids, Volume 402, 15 October 2014
  • Xijia He, Jianbei Qiu, Yong Yang, Dacheng Zhou, Xuhui Xu, Shengxian Wei, Abnormal near-infrared luminescence property of bismuth doped calcium germanate glasses, Journal of Non-Crystalline Solids, Volume 402, 15 October 2014
  • A.A. Novikov, B.S. Bokstein, A.L. Petelin, A.O. Rodin, Grain boundary wetting kinetics of bismuth melt into copper polycrystalline structure, Materials Letters, Volume 133, 15 October 2014
  • ZhangSheng Liu, HuaShen Ran, JiNan Niu, PeiZhong Feng, YaBo Zhu, One-pot synthesis of Bismuth Oxyhalide/Oxygen-rich bismuth oxyhalide Heterojunction and its photocatalytic activity, Journal of Colloid and Interface Science, Volume 431, 1 October 2014
  • Xue Lin, Zongxiao Liu, Xiaoyu Guo, Chunbo Liu, Hongju Zhai, Qingwei Wang, Limin Chang, Controllable synthesis and photocatalytic activity of spherical, flower-like and nanofibrous bismuth tungstates, Materials Science and Engineering: B, Volume 188, October 2014
  • Gowrish K. Rao, Doping ZnS and ZnSe thin films with bismuth: A comparison between sandwiching technique and nano-particle incorporation, Materials Science in Semiconductor Processing, Volume 26, October 2014
  • Zhengyang Bin, Lian Duan, Chen Li, Deqiang Zhang, Guifang Dong, Liduo Wang, Yong Qiu, Bismuth Trifluoride as a low-temperature-evaporable insulating dopant for efficient and stable organic light-emitting diodes, Organic Electronics, Volume 15, Issue 10, October 2014
  • R. Wongmaneerung, J. Padchasri, R. Tipakontitikul, T.H. Loan, P. Jantaratana, R. Yimnirun, S. Ananta, Phase formation, dielectric and magnetic properties of bismuth ferrite–lead magnesium niobate multiferroic composites, Journal of Alloys and Compounds, Volume 608, 25 September 2014

Recent Research & Development for Tellurides

  • Xiaokang Fan, Kefeng Li, Xia Li, Peiwen Kuan, Xin Wang, Lili Hu, Spectroscopic properties of 2.7 µm emission in Er3+ doped telluride glasses and fibers, Journal of Alloys and Compounds, Volume 615, 5 December 2014
  • Phuoc Huu Le, Chien-Neng Liao, Chih Wei Luo, Jihperng Leu, Thermoelectric properties of nanostructured bismuth–telluride thin films grown using pulsed laser deposition, Journal of Alloys and Compounds, Volume 615, 5 December 2014
  • Masayuki Takashiri, Kazuo Imai, Masato Uyama, Harutoshi Hagino, Saburo Tanaka, Koji Miyazaki, Yoshitake Nishi, Effects of homogeneous irradiation of electron beam on crystal growth and thermoelectric properties of nanocrystalline bismuth selenium telluride thin films, Journal of Alloys and Compounds, Volume 612, 5 November 2014
  • Tobias Rosenthal, Simon Welzmiller, Lukas Neudert, Philipp Urban, Andy Fitch, Oliver Oeckler, Novel superstructure of the rocksalt type and element distribution in germanium tin antimony tellurides, Journal of Solid State Chemistry, Volume 219, November 2014
  • Zhenzhou Rong, Xi'an Fan, Fan Yang, Xinzhi Cai, Guangqiang Li, Microwave activated hot pressing: A new consolidation technique and its application to fine crystal bismuth telluride based compounds, Powder Technology, Volume 267, November 2014
  • Bárbara Tirloni, Adelheid Hagenbach, Ernesto Schulz Lang, Ulrich Abram, Thiocarbamoylbenzimidophenylselenide and -telluride and their reactions with metal ions, Polyhedron, Volume 79, 5 September 2014
  • M.J. Winiarski, M. Samsel-Czekala, A. Ciechan, Strain effects on electronic structure and superconductivity in the iron telluride, Intermetallics, Volume 52, September 2014
  • Mohsen K. Keshavarz, Dimitri Vasilevskiy, Remo A. Masut, Sylvain Turenne, Synthesis and characterization of bismuth telluride-based thermoelectric nanocomposites containing MoS2 nano-inclusions, Materials Characterization, Volume 95, September 2014
  • K. Aravinth, G. Anandha Babu, P. Ramasamy, Silver gallium telluride (AgGaTe2) single crystal: Synthesis, accelerated crucible rotation-Bridgman growth and characterization, Materials Science in Semiconductor Processing, Volume 24, August 2014
  • Zhaoyun Ge, Ling Xu, Renqi Zhang, Zhaoguo Xue, Hongyu Wang, Jun Xu, Yao Yu, Weining Su, Zhongyuan Ma, Kunji Chen, Improved performance of silicon nanowire/cadmium telluride quantum dots/organic hybrid solar cells, Applied Surface Science, Available online 18 July 2014
  • Esha V. Shah, Debesh R. Roy, A comparative DFT study on electronic, thermodynamic and optical properties of telluride compounds, Computational Materials Science, Volume 88, 1 June 2014
  • Roberta Cargnelutti, Ernesto S. Lang, Davi F. Back, Ricardo F. Schumacher, Electrophilic cyclization of homopropargyl tellurides: Synthesis and supramolecular structures of 2-aryl-3-iodo-1-phenyl-tellurophenium iodides and polyiodides, Polyhedron, Volume 73, 8 May 2014
  • Hyoungseok Kim, Kyounghoon Cha, Vasilis M. Fthenakis, Parikhit Sinha, Tak Hur, Life cycle assessment of cadmium telluride photovoltaic (CdTe PV) systems, Solar Energy, Volume 103, May 2014
  • Wen Hsuan Chao, Yi Ray Chen, Shih Chun Tseng, Ping Hsing Yang, Ren Jye Wu, Jenn Yeu Hwang, Enhanced thermoelectric properties of metal film on bismuth telluride-based materials, Thin Solid Films, Available online 18 April 2014
  • Yang Zhou, Liangliang Li, Qing Tan, Jing-Feng Li, Thermoelectric properties of Pb-doped bismuth telluride thin films deposited by magnetron sputtering, Journal of Alloys and Compounds, Volume 590, 25 March 2014
  • Nicolas Berchenko, Sergey Fadeev, Volodymyr Savchyn, Kurban Kurbanov, Malgorzata Trzyna, Jozef Cebulski, Pb–Te–O phase equilibrium diagram and the lead telluride thermal oxidation, Thermochimica Acta, Volume 579, 10 March 2014
  • B. Bahloul, A. Bentabet, L. Amirouche, Y. Bouhadda, S. Bounab, B. Deghfel, N. Fenineche, Ab initio calculations of structural, electronic, optical and thermodynamic properties of alkaline earth tellurides BaxSr1-XTe, Journal of Physics and Chemistry of Solids, Volume 75, Issue 3, March 2014
  • Liyan Zhou, Shancheng Yan, Tao Lu, Yi Shi, Jianyu Wang, Fan Yang, Indium telluride nanotubes: Solvothermal synthesis, growth mechanism, and properties, Journal of Solid State Chemistry, Volume 211, March 2014
  • Zhenyu Zhang, Bo Wang, Xianzhong Zhang, A maximum in the hardness of nanotwinned cadmium telluride, Scripta Materialia, Volumes 72–73, February 2014
  • Guoqiu Yuan, Yusong Li, Ning Bao, Jianwen Miao, Cunwang Ge, Yihong Wang, Facile synthesis and thermoelectric studies of n-type bismuth telluride nanorods with cathodic stripping Te electrode, Materials Chemistry and Physics, Volume 143, Issue 2, 15 January 2014