Lead Selenide Quantum Dots

PbSe
CAS 12069-00-0


Product Product Code Order or Specifications
Lead Selenide Quantum Dot PBSE-QD Contact American Elements

CHEMICAL
IDENTIFIER
Formula CAS No. PubChem SID PubChem CID MDL No. EC No IUPAC Name Beilstein
Re. No.
SMILES
Identifier
InChI
Identifier
InChI
Key
PbSe 12069-00-0 24855368 61550 MFCD00016273 235-109-4 selanylidenelead N/A [Pb]=[Se] InChI=1S/Pb.Se GGYFMLJDMA
MTAB-UHFFF
AOYSA-N

PROPERTIES Compound Formula Mol. Wt. Appearance Melting Point Boiling Point Density

Exact Mass

Monoisotopic Mass Charge MSDS
PbSe 286.16 Powder 1078 °C, 1351 K, 1972 °F N/A 8.1 g/mL at 25 °C 287.893173 287.893173 0 Safety Data Sheet

American Elements is a manufacturer and supplier specializing in producing Lead Selenide (PbSe) Quantum Dots. PbSe Quantum Dots are finding important application in solar energy due to their extremely wide band gap in which they absorbs light. American Elements manufactures quantum dots from several semiconductor materials, including Cadmium Telluride (CdTe), Zinc Indium Phosphide/Zinc Sulfide (ZnInP/ZnS), Zinc Cadmium Selenide/Zinc Sulfide (ZnCdSe/ZnS), Indium Phosphide/ Zinc Sulfide (InP/ZnS), and Graphene; for more information about uses and applications for quantum dots, please visit the Quantum Dots information center.

Lead Bohr Model Lead (Pb) atomic and molecular weight, atomic number and elemental symbolLead (atomic symbol: Pb, atomic number: 82) is a Block P, Group 14, Period 6 element with an atomic radius of 207.2. The number of electrons in each of Lead's shells is [2, 8, 18, 32, 18, 4] and its electron configuration is [Xe] 4f14 5d10 6s2 6p2. The lead atom has a radius of 175 pm and a Van der Waals radius of 202 pm. In its elemental form, lead has a metallic gray appearance. Lead occurs naturally as a mixture of four stable isotopes: 204Pb (1.48%), 206Pb (23.6%), 207Pb (22.6%), and 208Pb (52.3%). Elemental Lead Lead is obtained mainly from galena (PbS) by a roasting process. Anglesite, cerussite, and minim are other common lead containing minerals. Lead does occur as a free element in nature, but it is rare. It is a dense, soft metal that is very resistant to corrosion and poorly conductive compared to other metals. Its density and low melting point make it useful in applications such as electrolysis and industrual materials. For more information on lead, including properties, safety data, research, and American Elements' catalog of lead products, visit the Lead Information Center.

HEALTH, SAFETY & TRANSPORTATION INFORMATION
Material Safety Data Sheet MSDS
Signal Word Danger
Hazard Statements H301 + H331-H302 + H332-H360Df-H373-H410
Hazard Codes T,N
Risk Codes 60-61-23/25-33-50/53
Safety Precautions 53-20/21-28-45-60-61
RTECS Number N/A
Transport Information UN 3283 6.1/PG 3
WGK Germany 3
Globally Harmonized System of
Classification and Labelling (GHS)
Environment-Hazardous to the aquatic environment Health Hazard Skull and Crossbones-Acute Toxicity     

LEAD SELENIDE SYNONYMS
Lead(II) selenide

CUSTOMERS FOR LEAD SELENIDE QUANTUM DOTS HAVE ALSO LOOKED AT
Show Me MORE Forms of Lead

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis





German   Korean   French   Japanese   Spanish   Chinese (Simplified)   Portuguese   Russian   Chinese (Taiwan)  Italian   Turkish   Polish   Dutch   Czech   Swedish   Hungarian   Danish   Hebrew

Production Catalog Available in 36 Countries & Languages


Recent Research & Development for Lead

  • M. Sundara Rao, Y. Gandhi, Bhaskar Sanyal, K. Bhargavi, M. Piasecki, N. Veeraiah, Studies on ?-ray induced structural changes in Nd3+ doped lead alumino silicate glasses by means of thermoluminescence for dosimetric applications in high dose ranges, Journal of Alloys and Compounds, Volume 616, 15 December 2014
  • Xiaoshi Lang, Dianlong Wang, Chiyu Hu, Shenzhi Tang, Junsheng Zhu, Chenfeng Guo, The use of nanometer tetrabasic lead sulfate as positive active material additive for valve regulated lead-acid battery, Journal of Power Sources, Volume 270, 15 December 2014
  • Bo Hong, Liangxing Jiang, Haitao Xue, Fangyang Liu, Ming Jia, Jie Li, Yexiang Liu, Characterization of nano-lead-doped active carbon and its application in lead-acid battery, Journal of Power Sources, Volume 270, 15 December 2014
  • R. Tenno, E. Nefedov, Electrolyte depletion control laws for lead-acid battery discharge optimisation, Journal of Power Sources, Volume 270, 15 December 2014
  • Xiaojuan Sun, Jiakuan Yang, Wei Zhang, Xinfeng Zhu, Yuchen Hu, Danni Yang, Xiqing Yuan, Wenhao Yu, Jinxin Dong, Haifeng Wang, Lei Li, R. Vasant Kumar, Sha Liang, Lead acetate trihydrate precursor route to synthesize novel ultrafine lead oxide from spent lead acid battery pastes, Journal of Power Sources, Volume 269, 10 December 2014
  • Dominik Schulte, Dirk Uwe Sauer, Ellen Ebner, Alexander Börger, Sven Gose, Heinz Wenzl, “Stratifiability index” – A quantitative assessment of acid stratification in flooded lead acid batteries, Journal of Power Sources, Volume 269, 10 December 2014
  • Hongyi Li, Lingyun Dong, Yi Lu, Shilie Pan, Xiaoquan Lu, Hongwei Yu, Hongping Wu, Xin Su, Zhihua Yang, Synthesis, crystal structure, and optical properties of a new lead barium borate, PbBa2(B3O6)2, Journal of Alloys and Compounds, Volume 615, 5 December 2014
  • Hui Wang, Jiagang Wu, Phase transition, microstructure, and electrical properties of Ca, Zr, and Sn-modified BaTiO3 lead-free ceramics, Journal of Alloys and Compounds, Volume 615, 5 December 2014
  • Baoxiang He, Hua Wang, Xie He, Vibration test methods and their experimental research on the performance of the lead-acid battery, Journal of Power Sources, Volume 268, 5 December 2014
  • Yue Li, Zheng Shen, Asok Ray, Christopher D. Rahn, Real-time estimation of lead-acid battery parameters: A dynamic data-driven approach, Journal of Power Sources, Volume 268, 5 December 2014
  • Olawale L. Osifeko, Tebello Nyokong, Applications of lead phthalocyanines embedded in electrospun fibers for the photoinactivation of Escherichia coli in water, Dyes and Pigments, Volume 111, December 2014
  • L.F. Li, Y.K. Cheng, G.L. Xu, E.Z. Wang, Z.H. Zhang, H. Wang, Effects of indium addition on properties and wettability of Sn–0.7Cu–0.2Ni lead-free solders, Materials & Design, Volume 64, December 2014
  • Sudip K. Chatterjee, Saba N. Khan, Partha Roy Chaudhuri, Two-octave spanning single pump parametric amplification at 1550 nm in a host lead-silicate binary multi-clad microstructure fiber: Influence of multi-order dispersion engineering, Optics Communications, Volume 332, 1 December 2014
  • A.A. El-Daly, A.E. Hammad, G.S. Al-Ganainy, M. Ragab, Properties enhancement of low Ag-content Sn–Ag–Cu lead-free solders containing small amount of Zn, Journal of Alloys and Compounds, Volume 614, 25 November 2014
  • Xing Liu, Min Zhu, Zhihui Chen, Bijun Fang, Jianning Ding, Xiangyong Zhao, Haiqing Xu, Haosu Luo, Structure and electrical properties of Li-doped BaTiO3–CaTiO3–BaZrO3 lead-free ceramics prepared by citrate method, Journal of Alloys and Compounds, Volume 613, 15 November 2014
  • Matthew Sorge, Thomas Bean, Travis Woodland, John Canning, I. Frank Cheng, Dean B. Edwards, Investigating the use of porous, hollow glass microspheres in positive lead acid battery plates, Journal of Power Sources, Volume 266, 15 November 2014
  • Fangxu Li, Dingquan Xiao, Jiagang Wu, Zhuo Wang, Chao Liu, Jianguo Zhu, Phase structure and electrical properties of (K0.5Na0.5)NbO3–(Bi0.5Na0.5)ZrO3 lead-free ceramics with a sintering aid of ZnO, Ceramics International, Volume 40, Issue 9, Part B, November 2014
  • Pengran Gao, Yi Liu, Weixin Lv, Rui Zhang, Wei Liu, Xianfu Bu, Guanghua Li, Lixu Lei, Methanothermal reduction of mixtures of PbSO4 and PbO2 to synthesize ultrafine a-PbO powders for lead acid batteries, Journal of Power Sources, Volume 265, 1 November 2014
  • Debdoot Hazari, Swapan Kumar Jana, Michel Fleck, Ennio Zangrando, Sudipta Dalai, Two three-dimensional coordination polymers of lead(II) with iminodiacetate and naphthalene-dicarboxylate anions: Synthesis, characterization and luminescence behavior, Journal of Solid State Chemistry, Volume 219, November 2014
  • Nicolás Arancibia-Miranda, Samuel E. Baltazar, Alejandra García, Aldo H. Romero, María A. Rubio, Dora Altbir, Lead removal by nano-scale zero valent iron: Surface analysis and pH effect, Materials Research Bulletin, Volume 59, November 2014

Recent Research & Development for Selenides

  • Azam Sobhani, Masoud Salavati-Niasari, A new simple route for the preparation of nanosized copper selenides under different conditions, Ceramics International, Volume 40, Issue 6, July 2014
  • Margaret A. Tiedemann, Chelsea L. Mandell, Benny C. Chan, Chip Nataro, X-ray structures and oxidative electrochemistry of phosphine sulfides and phosphine selenides, Inorganica Chimica Acta, Available online 18 June 2014
  • Matthew D. Ward, Eric A. Pozzi, Richard P. Van Duyne, James A. Ibers, Syntheses, structures, and optical properties of the indium/germanium selenides Cs4In8GeSe16, CsInSe2, and CsInGeSe4, Journal of Solid State Chemistry, Volume 212, April 2014
  • Xiao Li, Shouri Sheng, Haiyou Su, Li Liu, Xiao-Ling Liu, Polymer-bound phenylselenenylmethyl sulfone as an efficient reagent for the solid-phase synthesis of (E)-vinyl phenyl selenides, Reactive and Functional Polymers, Volume 77, April 2014
  • Elena Yu. Zakharova, Sergey M. Kazakov, Anna A. Isaeva, Artem M. Abakumov, Gustaaf Van Tendeloo, Alexey N. Kuznetsov, Pd5InSe and Pd8In2Se – New metal-rich homological selenides with 2D palladium–indium fragments: Synthesis, structure and bonding, Journal of Alloys and Compounds, Volume 589, 15 March 2014
  • Shivani Gulati (nee Doomra), Kuldip K. Bhasin, Synthesis and characterization of novel 2-fluoro/chloro-3-pyridyl selenides: X-ray crystal structure of bis(2-fluoro-3-pyridyl) diselenide and bis(2-fluoro-3-pyridylseleno) methane, Journal of Fluorine Chemistry, Volume 156, December 2013
  • Wei-Wei Xiong, Kaiqi Ye, Ling Ye, Qichun Zhang, Syntheses, crystal structures, and properties of two new one-dimensional heterometallic selenides: [DBNH]4[M3Sn4Se11(Se2)2] (M = Cd, Hg), Inorganic Chemistry Communications, Volume 35, September 2013
  • Ming-Yan Chung, Chi-Shen Lee, New quinternary selenides: Syntheses, characterizations, and electronic structure calculations, Journal of Solid State Chemistry, Volume 202, June 2013
  • Yanqing Lai, Can Han, Chang Yan, Fangyang Liu, Jie Li, Yexiang Liu, Thermodynamic analysis on metal selenides electrodeposition, Journal of Alloys and Compounds, Volume 557, 25 April 2013
  • Alexander V. Artem'ev, Ludmila A. Oparina, Nina K. Gusarova, Nikita A. Kolyvanov, Oksana V. Vysotskaya, Irina Yu. Bagryanskaya, Boris A. Trofimov, Chemoselective synthesis of first representatives of bis(diorganothiophosphinyl)selenides, (R2P = S)2Se, from secondary phosphine sulfides and elemental selenium, Inorganic Chemistry Communications, Volume 30, April 2013
  • Christian M. Schurz, Pia Talmon-Gros, Falk Lissner, Thomas Schleid, The gadolinium nitride selenides Gd3NSe3 and Gd23N5Se27: Three connectivity types of [NGd4]9+ tetrahedra and fivefold coordinated Gd3+ cations, Solid State Sciences, Volume 17, March 2013
  • Arkady G. Makarov, Alexander Yu. Makarov, Irina Yu. Bagryanskaya, Makhmut M. Shakirov, Andrey V. Zibarev, New polyfluorinated aromatic and aza-aromatic diselenides, selenyl chlorides, non-symmetric selenides and selenoxides, Journal of Fluorine Chemistry, Volume 144, December 2012
  • Dariusz Bialek, Konrad Kowalski, Jacek Scianowski, Zbigniew Rafinski, Andrzej Wojtczak, Preparation and characterization of new chiral ferrocenyl selenides, Journal of Organometallic Chemistry, Volume 712, 1 August 2012
  • Dongjiang Zhao, Sheng Zhang, Geping Yin, Chunyu Du, Zhenobo Wang, Jie Wei, Effect of Se in Co-based selenides towards oxygen reduction electrocatalytic activity, Journal of Power Sources, Volume 206, 15 May 2012
  • Christian Bartsch, Thomas Doert, Pronounced site preference and mixed dinuclear dichalcogenide anions (SSe)2- in ternary lanthanum sulfide selenides – The solid solution LaS1.9–LaSe1.9, Solid State Sciences, Volume 14, Issue 4, April 2012
  • M. Yogeswari, G. Kalpana, Half-metallic ferromagnetism in alkaline earth selenides by first principles calculations, Computational Materials Science, Volume 54, March 2012
  • Azam Sobhani, Masoud Salavati-Niasari, Fatemeh Davar, Shape control of nickel selenides synthesized by a simple hydrothermal reduction process, Polyhedron, Volume 31, Issue 1, 4 January 2012
  • Christian Bartsch, Thomas Doert, Ternary lanthanum sulfide selenides a-LaS2-xSex (0<x<2) with mixed dichalcogenide anions X22- (X=S, Se), Journal of Solid State Chemistry, Volume 185, January 2012
  • John O. Thompson, Michael D. Anderson, Tim Ngai, Thomas Allen, David C. Johnson, Nucleation and growth kinetics of co-deposited copper and selenium precursors to form metastable copper selenides, Journal of Alloys and Compounds, Volume 509, Issue 40, 6 October 2011
  • Madhu, R.N. Singh, Palladium selenides as active methanol tolerant cathode materials for direct methanol fuel cell, International Journal of Hydrogen Energy, Volume 36, Issue 16, August 2011