Skip to Page Content

Zinc Cadmium Selenide/Zinc Sulfide Quantum Dots

Zn-Cd-Se/ Zn-S


Product Product Code Request Quote
Zinc Cadmium Selenide/Zinc Sulfide Quantum Dot -440 nm ZNCDSEZNS-QD-440 Request Quote
Zinc Cadmium Selenide/Zinc Sulfide Quantum Dot -480 nm ZNCDSEZNS-QD-480 Request Quote

American Elements is a manufacturer and supplier specializing in producing Zinc Cadmium Selenide/Zinc Sulfide (ZnCdSe/ZnS) Quantum Dots. ZnCdSe/ZnS Quantum Dots are core-shell structured inorganic nanocrystals where an inner core of Cadmium Selenide is encapsulated in an outer core of wider band gap Zinc Selenide. Zinc Cadmium Selenide/Zinc Sulfide Quantum Dots exhibit spectra emission ranges from 530 nanometers (nm) to 610 nanometers (nm) wavelengths. They are high luminosity inorganic particles soluble in various organic solutions. Zinc Cadmium Selenide/Zinc Sulfide Quantum Dots are nanoparticles of Cadmium Selenide/Zinc Sulfide semiconductor crystals with the novel property of having an extremely narrow emission spectrum (Gaussian Distribution) that is directly proportional to the particle's size. The smaller the particle the more its emission is blue shifted and conversely the larger the particle size, the more its emission is red shifted. Zinc Cadmium Selenide/Zinc Sulfide Quantum Dots have the potential to turn light emitting diodes (LED) from merely display devises to illumination devices creating the first solid state lighting sources. technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement. American Elements manufactures quantum dots from several semiconductor materials, including Cadmium Telluride (CdTe), Lead Selenide (PbSe), Zinc Indium Phosphide/Zinc Sulfide (ZnInP/ZnS), Indium Phosphide/ Zinc Sulfide (InP/ZnS), and Graphene; for more information about uses and applications for quantum dots, please visit the Quantum Dots information center.

Zinc (Zn) atomic and molecular weight, atomic number and elemental symbolZinc (atomic symbol: Zn, atomic number: 30) is a Block D, Group 12, Period 4 element with an atomic weight of 65.38. The number of electrons in each of zinc's shells is 2, 8, 18, 2, and its electron configuration is [Ar] 3d10 4s2. Zinc Bohr ModelThe zinc atom has a radius of 134 pm and a Van der Waals radius of 210 pm. Zinc was discovered by Indian metallurgists prior to 1000 BC and first recognized as a unique element by Rasaratna Samuccaya in 800. Zinc was first isolated by Andreas Marggraf in 1746.Elemental Zinc In its elemental form, zinc has a silver-gray appearance. It is brittle at ordinary temperatures but malleable at 100 °C to 150 °C. It is a fair conductor of electricity, and burns in air at high red producing white clouds of the oxide. Zinc is mined from sulfidic ore deposits. It is the 24th most abundant element in the earth's crust and the fourth most common metal in use (after iron, aluminum, and copper). The name zinc originates from the German word "zin," meaning tin. For more information on zinc, including properties, safety data, research, and American Elements' catalog of zinc products, visit the Zinc element page.

Cadmium (Cd) atomic and molecular weight, atomic number and elemental symbolCadmium (atomic symbol: Cd, atomic number: 48) is a Block D, Group 12, Period 5 element with an atomic weight of 112.411. Cadmium Bohr ModelThe number of electrons in each of Cadmium's shells is 2, 8, 18, 18, 2 and its electron configuration is [Kr] 4d10 5s2. The cadmium atom has a radius of 151 pm and a Van der Waals radius of 230 pm.Cadmium was discovered and first isolated by Karl Samuel Leberecht Hermann and Friedrich Stromeyer in 1817. In its elemental form, cadmium has a silvery bluish gray metallic appearance. Cadmium makes up about 0.1 ppm of the earth's crust. Elemental CadmiumNo significant deposits of cadmium containing ores are known, however, it is sometimes found in its metallic form. It is a common impurity in zinc ores and is isolated during the production of zinc. Cadmium is a key component in battery production and particular pigments and coatings due to its distinct yellow color. Cadmium oxide is used in phosphors for television picture tubes. The name Cadmium originates from the Latin word 'cadmia' and the Greek word 'kadmeia'. For more information on cadmium, including properties, safety data, research, and American Elements' catalog of cadmium products, visit the Cadmium element page.

Selenium Bohr ModelSelenide(Se) atomic and molecular weight, atomic number and elemental symbolSelenium (atomic symbol: Se, atomic number: 34) is a Block P, Group 16, Period 4 element with an atomic radius of 78.96. The number of electrons in each of Selenium's shells is 2, 8, 18, 6 and its electron configuration is [Ar] 3d10 4s2 4p4. The selenium atom has a radius of 120 pm and a Van der Waals radius of 190 pm. Selenium is a non-metal with several allotropes: a black, vitreous form with an irregular crystal structure; three red-colored forms with monoclinic crystal structures; and a gray form with a hexagonal crystal structure, the most stable and dense form of the element. Elemental Selenium One of the mose common uses for selenium is in glass production; the red tint that it lends to glass neutralizes green or yellow tints from impurities in the glass materials. Selenium was discovered and first isolated by Jöns Jakob Berzelius and Johann Gottlieb Gahn in 1817. The origin of the name Selenium comes from the Greek word "Selênê," meaning moon. For more information on selenium, including properties, safety data, research, and American Elements' catalog of selenium products, visit the Selenium element page.

Sulfur Bohr ModelSulfur (S) atomic and molecular weight, atomic number and elemental symbolSulfur or Sulphur (atomic symbol: S, atomic number: 16) is a Block P, Group 16, Period 3 element with an atomic radius of 32.066. The number of electrons in each of Sulfur's shells is 2, 8, 6 and its electron configuration is [Ne] 3s2 3p4. In its elemental form, sulfur has a light yellow appearance. The sulfur atom has a covalent radius of 105 pm and a Van der Waals radius of 180 pm. In nature, sulfur can be found in hot springs, meteorites, volcanoes, and as galena, gypsum, and epsom salts. Sulfur has been known since ancient times but was not accepted as an element until 1777, when Antoine Lavoisier helped to convince the scientific community that it was an element and not a compound. For more information on sulfur, including properties, safety data, research, and American Elements' catalog of sulfur products, visit the Sulfur element page.


CUSTOMERS FOR ZINC CADMIUM SELENIDE/ ZINC SULFIDE QUANTUM DOTS HAVE ALSO LOOKED AT
Zinc Bars ZnCdSe Zinc Foil Tin Bismuth Zinc Alloy Zinc Nanoparticles
Zinc Nitrate Zinc Acetylacetonate Zinc Oxide Sputtering Target Zinc Powder Zinc Acetate
Zinc Oxide Nanopowder Zinc Metal Zinc Pellets Zinc Oxide Pellets Zinc Chloride
Show Me MORE Forms of Zinc

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis

Recent Research & Development for Zinc

  • The large intracellular loop of hZIP4 is an intrinsically disordered zinc binding domain. Bafaro EM, Antala S, Nguyen TV, Dzul SP, Doyon B, Stemmler TL, Dempski RE. Metallomics. 2015 Apr 17. : Metallomics
  • Crystal structure of dimanganese(II) zinc bis-[ortho-phosphate(V)] monohydrate. Alhakmi G, Assani A, Saadi M, El Ammari L. Acta Crystallogr E Crystallogr Commun. 2015 Jan 14: Acta Crystallogr E Crystallogr Commun
  • [Photoinduced intra-molecular energy transfer of a novel phthalocyanine zinc(II) bearing poly (aryl benzyl ether) dendritic substitutents with carboxylic terminal]. Zheng SN, Chen WL, Peng YR. Guang Pu Xue Yu Guang Pu Fen Xi. 2014 Dec: Guang Pu Xue Yu Guang Pu Fen Xi
  • The effectiveness of high dose zinc acetate lozenges on various common cold symptoms: a meta-analysis. Hemilä H, Chalker E. BMC Fam Pract. 2015 Feb 25: BMC Fam Pract
  • Zinc in Gut-Brain Interaction in Autism and Neurological Disorders. Vela G, Stark P, Socha M, Sauer AK, Hagmeyer S, Grabrucker AM. Neural Plast. 2015: Neural Plast
  • The efficacy of zinc finger antiviral protein against hepatitis B virus transcription and replication in tansgenic mouse model. Chen EQ, Dai J, Bai L, Tang H. Virol J. 2015 Feb 13: Virol J
  • Diagnostic Potential of Zinc Finger Protein-Specific Autoantibodies and Associated Linear B-Cell Epitopes in Colorectal Cancer. O'Reilly JA, Fitzgerald J, Fitzgerald S, Kenny D, Kay EW, O'Kennedy R, Kijanka GS. PLoS One. 2015 Apr 13: PLoS One
  • Crystal structure of di-chlorido-bis-(4-ethyl-aniline-κN)zinc. Govindaraj J, Thirumurugan S, Reddy DS, Anbalagan K, SubbiahPandi A. Acta Crystallogr E Crystallogr Commun. 2015 Jan 14: Acta Crystallogr E Crystallogr Commun
  • The antioxidant effects of silver, gold, and zinc oxide nanoparticles on male mice in in vivo condition. Negahdary M, Chelongar R, Zadeh SK, Ajdary M. Adv Biomed Res. 2015 Mar 25: Adv Biomed Res
  • Characterizing the inhibitory action of zinc oxide nanoparticles on allergic-type mast cell activation. Feltis BN, Elbaz A, Wright PF, Mackay GA, Turney TW, Lopata AL. Mol Immunol. 2015 Mar 12

Recent Research & Development for Cadmium

  • In vivo genotoxicity and cytotoxicity assessment of cadmium chloride in peripheral erythrocytes of Labeo rohita (Hamilton). Jindal R, Verma S. Ecotoxicol Environ Saf. 2015 Apr 15: Ecotoxicol Environ Saf
  • Structural characterization of gas-phase cysteine and cysteine methyl ester complexes with zinc and cadmium dications by infrared multiple photon dissociation spectroscopy. Coates RA, McNary CP, Boles GC, Berden G, Oomens J, Armentrout PB. Phys Chem Chem Phys. 2015 Apr 16. : Phys Chem Chem Phys
  • Acute Cadmium Exposure Reduces the Local Angiotensin I Converting Enzyme Activity and Increases the Tissue Metal Content. Broseghini-Filho GB, Almenara CC, Vescovi MV, Faria TO, Vassallo DV, Angeli JK, Padilha AS. Biol Trace Elem Res. 2015 Feb 10. : Biol Trace Elem Res
  • Physiological and Proteomics Analyses Reveal the Mechanism of Eichhornia crassipes Tolerance to High-Concentration Cadmium Stress Compared with Pistia stratiotes. Li X, Zhou Y, Yang Y, Yang S, Sun X, Yang Y. PLoS One. 2015 Apr 17: PLoS One
  • The Non-carcinogenic Risk of Cadmium in Bottled Water in Different Age Groups Humans: Bandar Abbas City, Iran. Fakhri Y, Jafarzadeh S, Moradi B, Zandsalimi Y, Langarizadeh G, Amirhajeloo LR, Mirzaei M. Mater Sociomed. 2015 Feb: Mater Sociomed
  • Fatty acid profiles of ecotypes of hyperaccumulator Noccaea caerulescens growing under cadmium stress. Zemanová V, Pavlík M, Kyjaková P, Pavlíková D. J Plant Physiol. 2015 Apr 1: J Plant Physiol
  • Investigation of lead and cadmium in counterfeit cigarettes seized in the United States. He Y, von Lampe K, Wood L, Kurti M. Food Chem Toxicol. 2015 Apr 8.: Food Chem Toxicol
  • Drinking water quality and chronic kidney disease of unknown etiology (CKDu): synergic effects of fluoride, cadmium and hardness of water. Wasana HM, Aluthpatabendi D, Kularatne WM, Wijekoon P, Weerasooriya R, Bandara J. Environ Geochem Health. 2015 Apr 10. : Environ Geochem Health
  • Cadmium sulfide quantum dots induce oxydative-stress and behavioural impairments in the marine clam Scrobicularia plana. Buffet PE, Zalouk-Vergnoux A, Poirier L, Lopes C, Risso-de Faverney C, Guibbolini M, Gilliland D, Perrein-Ettajani H, Valsami-Jones E, Mouneyrac C. Environ Toxicol Chem. 2015 Mar 13.
  • Efficient biosorption of lead(II) and cadmium(II) ions from aqueous solutions by functionalized cell with intracellular CaCO3 mineral scaffolds. Ma X, Cui W, Yang L, Yang Y, Chen H, Wang K. Bioresour Technol. 2015 Feb 26

Recent Research & Development for Selenides

  • Soft chemical control of superconductivity in lithium iron selenide hydroxides Li(1-x)Fe(x)(OH)Fe(1-y)Se. Sun H, Woodruff DN, Cassidy SJ, Allcroft GM, Sedlmaier SJ, Thompson AL, Bingham PA, Forder SD, Cartenet S, Mary N, Ramos S, Foronda FR, Williams BH, Li X, Blundell SJ, Clarke SJ. Inorg Chem. 2015 Feb 16: Inorg Chem
  • Selenide Targets to Reperfusing Tissue and Protects It From Injury. Iwata A, Morrison ML, Blackwood JE, Roth MB. Crit Care Med. 2015 Apr 6. : Crit Care Med
  • Lifetime, mobility, and diffusion of photoexcited carriers in ligand-exchanged lead selenide nanocrystal films measured by time-resolved terahertz spectroscopy. Guglietta GW, Diroll BT, Gaulding EA, Fordham JL, Li S, Murray CB, Baxter JB. ACS Nano. 2015 Feb 24: ACS Nano
  • Nanoscale determination of the mass enhancement factor in the lightly doped bulk insulator lead selenide. Zeljkovic I, Scipioni KL, Walkup D, Okada Y, Zhou W, Sankar R, Chang G, Wang YJ, Lin H, Bansil A, Chou F, Wang Z, Madhavan V. Nat Commun. 2015 Mar 27: Nat Commun
  • Mono and digallium selenide clusters as potential superhalogens. Seeburrun N, Archibong EF, Ramasami P. J Mol Model. 2015 Mar: J Mol Model
  • Transparent metal selenide alloy counter electrodes for high-efficiency bifacial dye-sensitized solar cells. Duan Y, Tang Q, Liu J, He B, Yu L. Angew Chem Int Ed Engl. 2014 Dec 22: Angew Chem Int Ed Engl
  • Formation of Metal Selenide and -Selenium Nanoparticles using Distinct Reactivity between Selenium and Noble Metals. Park SH, Choi JY, Lee YH, Park JT, Song H. Chem Asian J. 2015 Apr 16.: Chem Asian J
  • Lead selenide quantum dot polymer nanocomposites. Waldron DL, Preske A, Zawodny JM, Krauss TD, Gupta MC. Nanotechnology. 2015 Feb 20: Nanotechnology
  • Soft Chemical Control of Superconductivity in Lithium Iron Selenide Hydroxides Li1-xFex(OH)Fe1-ySe. Sun H, Woodruff DN, Cassidy SJ, Allcroft GM, Sedlmaier SJ, Thompson AL, Bingham PA, Forder SD, Cartenet S, Mary N, Ramos S, Foronda FR, Williams BH, Li X, Blundell SJ, Clarke SJ. Inorg Chem. 2015 Feb 16
  • Cadmium telluride (CdTe) and cadmium selenide (CdSe) leaching behavior and surface chemistry in response to pH and O2. Zeng C, Ramos-Ruiz A, Field JA, Sierra-Alvarez R. J Environ Manage. 2015 Feb 21

Recent Research & Development for Sulfides

  • Enhanced field emission from in situ synthesized 2D copper sulfide nanoflakes at low temperature by using a novel controllable solvothermal preferred edge growth route. Song Z, Lei H, Li B, Wang H, Wen J, Li S, Fang G. Phys Chem Chem Phys. 2015 Apr 14. : Phys Chem Chem Phys
  • [Influence of hydrogen sulfide on the intestinal biological barrier of rats with severe burn injury]. Li Y, Wang H, Wu X, Wang L. Zhonghua Shao Shang Za Zhi. 2015 Feb: Zhonghua Shao Shang Za Zhi
  • Deciphering the Pathogenesis of NSAID-Enteropathy Using Proton Pump Inhibitors and a Hydrogen Sulfide-Releasing NSAID. Blackler RW, De Palma G, Manko A, Da Silva GJ, Flannigan KL, Bercik P, Surette MG, Buret AG, Wallace JL. Am J Physiol Gastrointest Liver Physiol. 2015 Apr 16: Am J Physiol Gastrointest Liver Physiol
  • A comparison between determination of trace amounts of sulfide in the presence and absence of micelle particles in natural waters (Qazvin, Iran): a kinetic spectrophotometric approach. Alizadeh N, Mahjoub M. Environ Monit Assess. 2015 May: Environ Monit Assess
  • Involvement of Reactive Persulfides in Biological Bismethylmercury Sulfide Formation. Abiko Y, Yoshida E, Ishii I, Fukuto JM, Akaike T, Kumagai Y. Chem Res Toxicol. 2015 Apr 15. : Chem Res Toxicol
  • Preparation of efficient cadmium sulfide nanofibers for hydrogen production using ethylenediamine (NH2CH2CH2NH2) as template. Hernández-Gordillo A, Oros-Ruiz S, Gómez R. J Colloid Interface Sci. 2015 Apr 3: J Colloid Interface Sci
  • [Investigation of stages of chemical leaching and biooxidation during the extraction of gold from sulfide concentrates]. [No authors listed]. Prikl Biokhim Mikrobiol. 2015 Jan-Feb: Prikl Biokhim Mikrobiol
  • Facile assembly of oppositely charged silver sulfide nanoparticles into photoluminescent mesoporous nanospheres. Tan L, Liu S, Yang Q, Shen YM. Langmuir. 2015 Mar 15.
  • Cadmium sulfide quantum dots induce oxydative-stress and behavioural impairments in the marine clam Scrobicularia plana. Buffet PE, Zalouk-Vergnoux A, Poirier L, Lopes C, Risso-de Faverney C, Guibbolini M, Gilliland D, Perrein-Ettajani H, Valsami-Jones E, Mouneyrac C. Environ Toxicol Chem. 2015 Mar 13.
  • Hexametaphosphate-Capped Silica Mesoporous Nanoparticles Containing CuII Complexes for the Selective and Sensitive Optical Detection of Hydrogen Sulfide in Water. El Sayed S, Milani M, Licchelli M, Martínez-Máñez R, Sancenón F. Chemistry. 2015 Mar 10.