Titanium Foam

High Purity Ti Foam
CAS 7440-32-6


Product Product Code Order or Specifications
(2N) 99% Titanium Foam TI-M-02-FM Contact American Elements
(2N5) 99.5% Titanium Foam TI-M-025-FM Contact American Elements
(3N) 99.9% Titanium Foam TI-M-03-FM Contact American Elements
(3N5) 99.95% Titanium Foam TI-M-035-FM Contact American Elements
(4N) 99.99% Titanium Foam TI-FM-04 Contact American Elements
(5N) 99.999% Titanium Foam TI-FM-05 Contact American Elements

CHEMICAL
IDENTIFIER
Formula CAS No. PubChem SID PubChem CID MDL No. EC No Beilstein
Re. No.
SMILES
Identifier
InChI
Identifier
InChI
Key
Ti 7440-32-6 24858457 23963 MFCD00011264  231-142-3 N/A [Ti] InChI=1S/Ti RTAQQCXQSZGOHL-UHFFFAOYSA-N

PROPERTIES Mol. Wt. Appearance Density Tensile Strength Melting Point Boiling Point Thermal Conductivity Electrical Resistivity Eletronegativity Specific Heat Heat of Vaporization Heat of Fusion MSDS
47.86 Silvery 4.54 gm/cc  140 MPa 1660 °C 3287 °C 0.219 W/cm/K @ 298.2 K  42.0 microhm-cm @ 20°C 1.5 Paulings 0.125 Cal/g/K @ 25 °C 106.5 K-Cal/gm atom at 3287 °C 5.0 Cal/gm mole  Safety Data Sheet

99.99% High Purity Metal Foam Titanium Foam is low density permeable material with numerous applications. The defining characteristic of these foams is a very high porosity, typically 75-95% of the volume consisting of void spaces. Metallic foams have found a wide variety of applications in heat exchangers, energy absorption, flow diffusion and lightweight optics. Ceramic foam is often used for thermal insulation, acoustic insulation, adsorption of environmental pollutants, filtration of molten metal alloys, and as substrate for catalysts requiring large internal surface area. Titanium Foam is generally immediately available in most volumes. Additional technical, research and safety (MSDS) information is available.

Titanium (Ti) atomic and molecular weight, atomic number and elemental symbolTitanium (atomic symbol: Ti, atomic number: 22) is a Block D, Group 4, Period 4 element with an atomic weight of 47.867. The number of electrons in each of Titanium's shells is [2, 8, 10, 2] and its electron configuration is [Ar] 3d2 4s2. Titanium Bohr ModelThe titanium atom has a radius of 147 pm and a Van der Waals radius of 187 pm. Titanium was discovered by William Gregor in 1791 and first isolated by Jöns Jakob Berzelius in 1825. n its elemental form, titanium has a silvery grey-white metallic appearance. Titanium's properties are chemically and physically similar to zirconium, both of which have the same number of valence electrons and are in the same group in the periodic table.Elemental Titanium Titanium has five naturally occurring isotopes: 46Ti through 50Ti, with 48Ti being the most abundant (73.8%). Titanium is found in igneous rocks and the sediments derived from them. It is named after the word Titanos, which is Greek for Titans. For more information on titanium, including properties, safety data, research, and American Elements' catalog of titanium products, visit the Titanium Information Center.


HEALTH, SAFETY & TRANSPORTATION INFORMATION
N/A
N/A
N/A
N/A
N/A
N/A
N/A
nwg
N/A        

CUSTOMERS FOR TITANIUM FOAM HAVE ALSO LOOKED AT
Titanium Nanoparticles Titanium Pellets Titanium Sputtering Target Titanium(IV) Oxide Acetylacetonate Titanium Fluoride
Titanium Oxide Titanium Powder Titanium Bars Titanium Chloride Titanium Nickel Copper
Titanium Molybdenum Alloy Titanium Foil Titanium Oxide Pellets Titanium Metal Titanium Acetate
Show Me MORE Forms of Titanium

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis





German   Korean   French   Japanese   Spanish   Chinese (Simplified)   Portuguese   Russian   Chinese (Taiwan)  Italian   Turkish   Polish   Dutch   Czech   Swedish   Hungarian   Danish   Hebrew

Production Catalog Available in 36 Countries & Languages


Recent Research & Development for Titanium

  • Yi Chen, Jinshan Li, Bin Tang, Hongchao Kou, Xiangyi Xue, Yuwen Cui, Texture evolution and dynamic recrystallization in a beta titanium alloy during hot-rolling process, Journal of Alloys and Compounds, Volume 618, 5 January 2015
  • V.S. Rudnev, M.V. Adigamova, I.V. Lukiyanchuk, I.A. Tkachenko, V.P. Morozova, Structure and magnetic characteristics of iron-modified titania layers on titanium, Journal of Alloys and Compounds, Volume 618, 5 January 2015
  • S. Osovski, A. Srivastava, J.C. Williams, A. Needleman, Grain boundary crack growth in metastable titanium ß alloys, Acta Materialia, Volume 82, 1 January 2015
  • G.H. Feng, Y.Q. Yang, X. Luo, J. Li, B. Huang, Y. Chen, Fatigue properties and fracture analysis of a SiC fiber-reinforced titanium matrix composite, Composites Part B: Engineering, Volume 68, January 2015
  • Giable George, The structural and optical studies of titanium doped rare earth pigments and coloring applications, Dyes and Pigments, Volume 112, January 2015
  • Li Zhang, Yu-ping Feng, Qing Nan, Rong-xian Ke, Qing-lei Wan, Zhe Wang, Effects of titanium-based raw materials on electrochemical behavior of Ti(C,N)-based cermets, International Journal of Refractory Metals and Hard Materials, Volume 48, January 2015
  • Siwen Tang, Deshun Liu, Pengnan Li, Yuqiang Chen, Xiong Xiao, Formation of wear-resistant graded surfaces on titanium carbonitride-based cermets by microwave assisted nitriding sintering, International Journal of Refractory Metals and Hard Materials, Volume 48, January 2015
  • Erik R. Denlinger, Jarred C. Heigel, Pan Michaleris, T.A. Palmer, Effect of inter-layer dwell time on distortion and residual stress in additive manufacturing of titanium and nickel alloys, Journal of Materials Processing Technology, Volume 215, January 2015
  • Yonghao Xiao, Zhenggao Fu, Guohe Zhan, Zhanchang Pan, Chumin Xiao, Shoukun Wu, Chun Chen, Guanghui Hu, Zhigang Wei, Increasing Pt methanol oxidation reaction activity and durability with a titanium molybdenum nitride catalyst support, Journal of Power Sources, Volume 273, 1 January 2015
  • So-Jin Kim, Bo-Ram Lee, Eun-Suok Oh, Application of a bio-derivative, rosin, as a binder additive for lithium titanium oxide electrodes in lithium-ion batteries, Journal of Power Sources, Volume 273, 1 January 2015