Skip to Page Content

Titanium Powder

High Purity Ti Powder
CAS 7440-32-6


Product Product Code Request Quote
(2N) 99% Titanium Powder TI-M-02-P Request Quote
(3N) 99.9% Titanium Powder TI-M-03-P Request Quote
(4N) 99.99% Titanium Powder TI-M-04-P Request Quote
(5N) 99.999% Titanium Powder TI-M-05-P Request Quote

CHEMICAL
IDENTIFIER
Formula CAS No. PubChem SID PubChem CID MDL No. EC No Beilstein
Re. No.
SMILES
Identifier
InChI
Identifier
InChI
Key
Ti 7440-32-6 24858457 23963 MFCD00011264  231-142-3 N/A [Ti] InChI=1S/Ti RTAQQCXQSZGOHL-UHFFFAOYSA-N

PROPERTIES Mol. Wt. Appearance Density Tensile Strength Melting Point Boiling Point Thermal Conductivity Electrical Resistivity Eletronegativity Specific Heat Heat of Vaporization Heat of Fusion MSDS
47.86 Silvery 4.54 gm/cc  140 MPa 1660 °C 3287 °C 0.219 W/cm/K @ 298.2 K  42.0 microhm-cm @ 20°C 1.5 Paulings 0.125 Cal/g/K @ 25 °C 106.5 K-Cal/gm atom at 3287 °C 5.0 Cal/gm mole  Safety Data Sheet

Ultra High Purity Metal PowdersAmerican Elements specializes in producing high purity Titanium Powder with the smallest possible average grain sizes for use in preparation of pressed and bonded sputtering targets and in Chemical Vapor Deposition (CVD) and Physical Vapor Deposition (PVD) processes including Thermal and Electron Beam (E-Beam) Evaporation, Low Temperature Organic Evaporation, Atomic Layer Deposition (ALD), Metallic-Organic and Chemical Vapor Deposition (MOCVD). Powders are also useful in any application where high surface areas are desired such as water treatment and in fuel cell and solar applications. Nanoparticles () also produce very high surface areas. Our standard Powder particle sizes average in the range of - 325 mesh, - 100 mesh, 10-50 microns and submicron (< 1 micron). We can also provide many materials in the nanoscale range. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. See safety data and research below and pricing/lead time above. We also produce Titanium as rod, ingot, pieces, pellets, disc, granules, wire, and in compound forms, such as oxide. Other shapes are available by request.

Titanium (Ti) atomic and molecular weight, atomic number and elemental symbolTitanium (atomic symbol: Ti, atomic number: 22) is a Block D, Group 4, Period 4 element with an atomic weight of 47.867. The number of electrons in each of Titanium's shells is [2, 8, 10, 2] and its electron configuration is [Ar] 3d2 4s2. Titanium Bohr ModelThe titanium atom has a radius of 147 pm and a Van der Waals radius of 187 pm. Titanium was discovered by William Gregor in 1791 and first isolated by Jöns Jakob Berzelius in 1825. In its elemental form, titanium has a silvery grey-white metallic appearance. Titanium's properties are chemically and physically similar to zirconium, both of which have the same number of valence electrons and are in the same group in the periodic table.Elemental Titanium Titanium has five naturally occurring isotopes: 46Ti through 50Ti, with 48Ti being the most abundant (73.8%). Titanium is found in igneous rocks and the sediments derived from them. It is named after the word Titanos, which is Greek for Titans. For more information on titanium, including properties, safety data, research, and American Elements' catalog of titanium products, visit the Titanium element page.


HEALTH, SAFETY & TRANSPORTATION INFORMATION
N/A
N/A
N/A
N/A
N/A
N/A
N/A
nwg
N/A        

CUSTOMERS FOR TITANIUM POWDER HAVE ALSO LOOKED AT
Titanium Nanoparticles Titanium Pellets Titanium Sputtering Target Titanium(IV) Oxide Acetylacetonate Titanium Fluoride
Titanium Oxide Titanium Powder Titanium Bars Titanium Chloride Titanium Nickel Copper
Titanium Molybdenum Alloy Titanium Foil Titanium Oxide Pellets Titanium Metal Titanium Acetate
Show Me MORE Forms of Titanium

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis

Recent Research & Development for Titanium

  • Effect of Repeated Simulated Clinical Use and Sterilization on the Cutting Efficiency and Flexibility of Hyflex CM Nickel-Titanium Rotary Files. Seago ST, Bergeron BE, Kirkpatrick TC, Roberts MD, Roberts HW, Himel VT, Sabey KA. J Endod. 2015 Mar 3.
  • Cellular Responses Evoked by Different Surface Characteristics of Intraosseous Titanium Implants. Feller L, Jadwat Y, Khammissa RA, Meyerov R, Schechter I, Lemmer J. Biomed Res Int. 2015
  • Airborne-particle abrasion parameters on the quality of titanium-ceramic bonds. Go??biowski M, Wo?owiec E, Klimek PL. J Prosthet Dent. 2015 Mar 4.
  • Enhancing osteoblast-affinity of titanium scaffolds for bone engineering by use of ultraviolet light treatment. Ishijima M, Soltanzadeh P, Hirota M, Tsukimura N, Shigami T, Ogawa T. Biomed Res. 2015
  • Bone tissue response to plasma-nitrided titanium implant surfaces. Ferraz EP, Sverzut AT, Freitas GP, Sá JC, Alves C Jr, Beloti MM, Rosa AL. J Appl Oral Sci. 2015 Jan-Feb
  • Antifouling coatings for dental implants: Polyethylene glycol-like coatings on titanium by plasma polymerization. Buxadera-Palomero J, Canal C, Torrent-Camarero S, Garrido B, Javier Gil F, Rodríguez D. Biointerphases. 2015 Jun 12
  • Comparing a series of 8-quinolinolato complexes of aluminium, titanium and zinc as initiators for the ring-opening polymerization of rac-lactide. Bakewell C, Fateh-Iravani G, Beh DW, Myers D, Tabthong S, Hormnirun P, White AJ, Long N, Williams CK. Dalton Trans. 2015 Mar 6.
  • Cyclic Fatigue Resistance of 3 Different Nickel-Titanium Reciprocating Instruments in Artificial Canals. Higuera O, Plotino G, Tocci L, Carrillo G, Gambarini G, Jaramillo DE. J Endod. 2015 Mar 11.
  • [A long-term study regarding the therapeutic effect of two titanium screw fixation for femoral neck fractures]. Zhou Z, Shen Y, Huang S. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2015 Feb
  • Tribocorrosion behavior of beta titanium biomedical alloys in phosphate buffer saline solution. Pina VG, Dalmau A, Devesa F, Amigó V, Muñoz AI. J Mech Behav Biomed Mater. 2015 Feb 26
  • Intermolecular Reductive Coupling of Esters with Benzophenones by Low-valent Titanium: Synthesis of Diarylmethyl ketones Revisited. Kise N, Sakurai T. J Org Chem. 2015 Mar 6.
  • Dependence of capillary forces on relative humidity and the surface properties of femtosecond laser micromachined titanium. Lehr J, Kietzig AM. J Colloid Interface Sci. 2015 Feb 23
  • Performance of Porous Tantalum vs. Titanium Cup in Total Hip Arthroplasty: Randomized Trial with Minimum 10-Year Follow-Up. Wegrzyn J, Kaufman KR, Hanssen AD, Lewallen DG. J Arthroplasty. 2015 Jan 21.
  • Mitochondrial dysfunction in titanium dioxide nanoparticle-induced neurotoxicity. Nalika N, Parvez S. Toxicol Mech Methods. 2015 Mar 16:1-9.
  • The Effect of Taper Angle and Spline Geometry on the Initial Stability of Tapered, Splined Modular Titanium Stems. Pierson JL, Small SR, Rodriguez JA, Kang MN, Glassman AH. J Arthroplasty. 2015 Feb 7.
  • Influence of various superhydrophilic treatments of titanium on the initial attachment, proliferation, and differentiation of osteoblast-like cells. Yamamura K, Miura T, Kou I, Muramatsu T, Furusawa M, Yoshinari M. Dent Mater J. 2015 Feb 3
  • Concentration-driven phase control for low temperature synthesis of phase-pure anatase and rutile titanium oxide. Wang Z, Xiao C, Yamada S, Yoshinaga K, Bu XR, Zhang M. J Colloid Interface Sci. 2015 Feb 9
  • Titanium mesh as a low-profile alternative for tension-band augmentation in patella fracture fixation: A biomechanical study. Dickens AJ, Salas C, Rise L, Murray-Krezan C, Taha MR, DeCoster TA, Gehlert RJ. Injury. 2015 Feb 26.
  • Low-Voltage Flexible Organic Electronics Based on High Performance Sol-Gel Titanium Dioxide Dielectric. Sung S, Park S, Lee WJ, Son J, Kim CH, Yoon MH. ACS Appl Mater Interfaces. 2015 Mar 9.
  • Visible light Caffeic acid degradation by carbon-doped titanium dioxide. Venditti F, Cuomo F, Ceglie A, Avino P, Russo MV, Lopez F. Langmuir. 2015 Mar 12.