Titanium Tube

High Purity Round, Square, Rectangular, Oval Ti Tube
CAS 7440-32-6


Product Product Code Order or Specifications
(2N) 99% Titanium Tube TI-M-02-TU Contact American Elements
(3N) 99.9% Titanium Tube TI-M-03-TU Contact American Elements
(4N) 99.99% Titanium Tube TI-M-04-TU Contact American Elements
(5N) 99.999% Titanium Tube TI-M-05-TU Contact American Elements

CHEMICAL
IDENTIFIER
Formula CAS No. PubChem SID PubChem CID MDL No. EC No Beilstein
Re. No.
SMILES
Identifier
InChI
Identifier
InChI
Key
Ti 7440-32-6 24858457 23963 MFCD00011264  231-142-3 N/A [Ti] InChI=1S/Ti RTAQQCXQSZGOHL-UHFFFAOYSA-N

PROPERTIES Mol. Wt. Appearance Density Tensile Strength Melting Point Boiling Point Thermal Conductivity Electrical Resistivity Eletronegativity Specific Heat Heat of Vaporization Heat of Fusion MSDS
47.86 Silvery 4.54 gm/cc  140 MPa 1660 °C 3287 °C 0.219 W/cm/K @ 298.2 K  42.0 microhm-cm @ 20°C 1.5 Paulings 0.125 Cal/g/K @ 25 °C 106.5 K-Cal/gm atom at 3287 °C 5.0 Cal/gm mole  Safety Data Sheet

American Elements specializes in supplying seamless Titanium tubing with a variety of dimensions including round, rectangular, square, and Round Metallic Tubes--Selected Dimensionsoval in numerous standard diameters from 0.02 to 6.0 inches and wall thicknesses from 0.003 to 0.500 inches.Tubing can be further processed to produce rings, washers, sleeves and sheaths. Custom configurations are also available. Selected Ultra High Purity Metallic TubesMaterials include most metals including the rare earth metals and other advanced materials. Tubes can also be produced from custom materials and alloys for commercial and research applications and for new proprietary technologies. Other available shapes include bar or plate form, as well as custom machined shapes and through other processes such as nanoparticles (See also application discussion at Nanotechnology Information and at Quantum Dots) and in the form of solutions and organometallics. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. See safety data and research below and pricing/lead time above. We also produce Titanium as rod, pellets, powder, pieces, granules, ingot, wire, and in compound forms, such as oxide. Other shapes are available by request.

Titanium (Ti) atomic and molecular weight, atomic number and elemental symbolTitanium (atomic symbol: Ti, atomic number: 22) is a Block D, Group 4, Period 4 element with an atomic weight of 47.867. The number of electrons in each of Titanium's shells is [2, 8, 10, 2] and its electron configuration is [Ar] 3d2 4s2. Titanium Bohr ModelThe titanium atom has a radius of 147 pm and a Van der Waals radius of 187 pm. Titanium was discovered by William Gregor in 1791 and first isolated by Jöns Jakob Berzelius in 1825. n its elemental form, titanium has a silvery grey-white metallic appearance. Titanium's properties are chemically and physically similar to zirconium, both of which have the same number of valence electrons and are in the same group in the periodic table.Elemental Titanium Titanium has five naturally occurring isotopes: 46Ti through 50Ti, with 48Ti being the most abundant (73.8%). Titanium is found in igneous rocks and the sediments derived from them. It is named after the word Titanos, which is Greek for Titans. For more information on titanium, including properties, safety data, research, and American Elements' catalog of titanium products, visit the Titanium Information Center.


HEALTH, SAFETY & TRANSPORTATION INFORMATION
N/A
N/A
N/A
N/A
N/A
N/A
N/A
nwg
N/A        

CUSTOMERS FOR TITANIUM TUBE HAVE ALSO LOOKED AT
Titanium Nanoparticles Titanium Pellets Titanium Sputtering Target Titanium(IV) Oxide Acetylacetonate Titanium Fluoride
Titanium Oxide Titanium Powder Titanium Bars Titanium Chloride Titanium Nickel Copper
Titanium Molybdenum Alloy Titanium Foil Titanium Oxide Pellets Titanium Metal Titanium Acetate
Show Me MORE Forms of Titanium

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis





German   Korean   French   Japanese   Spanish   Chinese (Simplified)   Portuguese   Russian   Chinese (Taiwan)  Italian   Turkish   Polish   Dutch   Czech   Swedish   Hungarian   Danish   Hebrew

Production Catalog Available in 36 Countries & Languages


Recent Research & Development for Titanium

  • Giable George, The structural and optical studies of titanium doped rare earth pigments and coloring applications, Dyes and Pigments, Volume 112, January 2015
  • Li Zhang, Yu-ping Feng, Qing Nan, Rong-xian Ke, Qing-lei Wan, Zhe Wang, Effects of titanium-based raw materials on electrochemical behavior of Ti(C,N)-based cermets, International Journal of Refractory Metals and Hard Materials, Volume 48, January 2015
  • G.J. Li, J. Li, X. Luo, Effects of post-heat treatment on microstructure and properties of laser cladded composite coatings on titanium alloy substrate, Optics & Laser Technology, Volume 65, January 2015
  • Xiaoxin Ye, Xiaopei Li, Guolin Song, Guoyi Tang, Effect of recovering damage and improving microstructure in the titanium alloy strip under high-energy electropulses, Journal of Alloys and Compounds, Volume 616, 15 December 2014
  • Wei-Sheng Liu, Shen-Yu Wu, Chao-Yu Hung, Ching-Hsuan Tseng, Yu-Lin Chang, Improving the optoelectronic properties of gallium ZnO transparent conductive thin films through titanium doping, Journal of Alloys and Compounds, Volume 616, 15 December 2014
  • Yanyan Zhu, Xiangjun Tian, Jia Li, Huaming Wang, Microstructure evolution and layer bands of laser melting deposition Ti–6.5Al–3.5Mo–1.5Zr–0.3Si titanium alloy, Journal of Alloys and Compounds, Volume 616, 15 December 2014
  • Guangyu Zhao, Yanning Niu, Li Zhang, Kening Sun, Ruthenium oxide modified titanium dioxide nanotube arrays as carbon and binder free lithium–air battery cathode catalyst, Journal of Power Sources, Volume 270, 15 December 2014
  • Zichao Yan, Li Liu, Jinli Tan, Qian Zhou, Zhifeng Huang, Dongdong Xia, Hongbo Shu, Xiukang Yang, Xianyou Wang, One-pot synthesis of bicrystalline titanium dioxide spheres with a core–shell structure as anode materials for lithium and sodium ion batteries, Journal of Power Sources, Volume 269, 10 December 2014
  • Kun-Mu Lee, Ling-Chuan Lin, Vembu Suryanarayanan, Chun-Guey Wu, Titanium dioxide coated on titanium/stainless steel foil as photoanode for high efficiency flexible dye-sensitized solar cells, Journal of Power Sources, Volume 269, 10 December 2014
  • Xiaodong Li, Zemin Zhang, Lulu Chen, Zhongping Liu, Jianli Cheng, Wei Ni, Erqing Xie, Bin Wang, Cadmium sulfide quantum dots sensitized tin dioxide–titanium dioxide heterojunction for efficient photoelectrochemical hydrogen production, Journal of Power Sources, Volume 269, 10 December 2014
  • J.S. Luo, K. Li, X.B. Li, Y.J. Shu, Y.J. Tang, Phase evolution and alloying mechanism of titanium aluminide nanoparticles, Journal of Alloys and Compounds, Volume 615, 5 December 2014
  • Ke Hua, Xiangyi Xue, Hongchao Kou, Jiangkun Fan, Bin Tang, Jinshan Li, Characterization of hot deformation microstructure of a near beta titanium alloy Ti-5553, Journal of Alloys and Compounds, Volume 615, 5 December 2014
  • Xinmei Hou, Penglong Qiu, Tao Yang, Kuo-Chih Chou, Synthesis of titanium nitride nanopowder at low temperature from the combustion synthesized precursor and the thermal stability, Journal of Alloys and Compounds, Volume 615, 5 December 2014
  • Ming Liu, Yan-Bing He, Wei Lv, Chen Zhang, Hongda Du, Baohua Li, Quan-Hong Yang, Feiyu Kang, High catalytic activity of anatase titanium dioxide for decomposition of electrolyte solution in lithium ion battery, Journal of Power Sources, Volume 268, 5 December 2014
  • Ariadne Helena P. de Oliveira, Helinando P. de Oliveira, Carbon nanotube/ polypyrrole nanofibers core–shell composites decorated with titanium dioxide nanoparticles for supercapacitor electrodes, Journal of Power Sources, Volume 268, 5 December 2014
  • Pengfei Cheng, Yang Liu, Peng Sun, Sisi Du, Yaxin Cai, Fengmin Liu, Jie Zheng, Geyu Lu, Hydrothermally growth of novel hierarchical structures titanium dioxide for high efficiency dye-sensitized solar cells, Journal of Power Sources, Volume 268, 5 December 2014
  • Lanfang Que, Zhang Lan, Wanxia Wu, Jihuai Wu, Jianming Lin, Miaoliang Huang, Titanium dioxide quantum dots: Magic materials for high performance underlayers inserted into dye-sensitized solar cells, Journal of Power Sources, Volume 268, 5 December 2014
  • Feng Gu, Wenjuan Huang, Shufen Wang, Xing Cheng, Yanjie Hu, Chunzhong Li, Improved photoelectric conversion efficiency from titanium oxide-coupled tin oxide nanoparticles formed in flame, Journal of Power Sources, Volume 268, 5 December 2014
  • Aslan Miriyev, David Barlam, Roni Shneck, Adin Stern, Nachum Frage, Steel to titanium solid state joining displaying superior mechanical properties, Journal of Materials Processing Technology, Volume 214, Issue 12, December 2014
  • X.P. Zhang, R. Shivpuri, A.K. Srivastava, Role of phase transformation in chip segmentation during high speed machining of dual phase titanium alloys, Journal of Materials Processing Technology, Volume 214, Issue 12, December 2014