Tin Chunk

High Purity Sn Chunk
CAS 7440-31-5


Product Product Code Order or Specifications
(2N) 99% Tin Chunk SN-M-02-CK Contact American Elements
(3N) 99.9% Tin Chunk SN-M-03-CK Contact American Elements
(4N) 99.99% Tin Chunk SN-M-04-CK Contact American Elements
(5N) 99.999% Tin Chunk SN-M-05-CK Contact American Elements
(6N) 99.9999% Tin Chunk SN-M-06-CK Contact American Elements

CHEMICAL
IDENTIFIER
Formula CAS No. PubChem SID PubChem CID MDL No. EC No Beilstein
Re. No.
SMILES
Identifier
InChI
Identifier
InChI
Key
Sn 7440-31-5 166491 N/A MFCD00133862  231-141-8 N/A [Sn] InChI=1S/Sn ATJFFYVFTNAWJD-UHFFFAOYSA-N

PROPERTIES Mol. Wt. Appearance Density Tensile Strength Melting Point Boiling Point Thermal Conductivity Electrical Resistivity Eletronegativity Specific Heat Heat of Vaporization Heat of Fusion MSDS
118.69 Yellow 7310 kg/m³ N/A 231.93 °C 2602 °C 0.668 W/cm/K @ 298.2 K  11.0 microhm-cm @ °C 1.8 Paulings  0.0510 Cal/g/K @ 25 °C 70 K-Cal/gm atom at 2270 °C 1.72 Cal/gm mole  Safety Data Sheet

High Purity ChunkAmerican Elements specializes in producing high purity Tin Chunk using crystallization, solid state and other ultra high purification processes such as sublimation. Standard Chunk pieces are amorphous uniform pieces ranging in size from 5-15 mm. American Elements specializes in producing custom compositions for commercial and research applications and for new proprietary technologies. American Elements also casts any of the rare earth metals and most other advanced materials into granules, rod, bar or plate form, as well as other machined shapes and through other processes such as nanoparticles (See also application discussion at Nanotechnology Information and at Quantum Dots) and in the form of solutions and organometallics. See research below.We also produce Tin as rod, pellets, powder, pieces, disc, ingot, wire, and in compound forms, such as oxide. Other shapes are available by request.

Tin Bohr ModelTin (Sn) atomic and molecular weight, atomic number and elemental symbolTin (atomic symbol: Sn, atomic number: 50) is a Block P, Group 14, Period 5 element with an atomic weight of 118.710. The number of electrons in each of tin's shells is 2, 8, 18, 18, 4 and its electron configuration is [Kr] 4d10 5s2 5p2. The tin atom has a radius of 140.5 pm and a Van der Waals radius of 217 pm.In its elemental form, tin has a silvery-gray metallic appearance. It is malleable, ductile and highly crystalline. High Purity (99.9999%) Tin (Sn) MetalTin has nine stable isotopes and 18 unstable isotopes. Under 3.72 degrees Kelvin, Tin becomes a superconductor. Applications for tin include soldering, plating, and such alloys as pewter. The first uses of tin can be dated to the Bronze Age around 3000 BC in which tin and copper were combined to make the alloy bronze. The origin of the word tin comes from the Latin word Stannum which translates to the Anglo-Saxon word tin. For more information on tin, including properties, safety data, research, and American Elements' catalog of tin products, visit the Tin Information Center.

HEALTH, SAFETY & TRANSPORTATION INFORMATION
Warning
H319-H335 
Xi
36/37
26
XP7320000
N/A
3
Exclamation Mark-Acute Toxicity        

CUSTOMERS FOR TIN CHUNK HAVE ALSO LOOKED AT
Bismuth Indium Tin Alloy Tin Acetate Tin Metal Tin Oxide Tin Chloride
Tin Pellets Tin Oxide Pellets Gold Tin Alloy Tin Nitrate Tin Acetylacetonate
Tin Foil Tin Rod Tin Nanoparticles Tin Powder Tin Sputtering Target
Show Me MORE Forms of Tin

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis





German   Korean   French   Japanese   Spanish   Chinese (Simplified)   Portuguese   Russian   Chinese (Taiwan)  Italian   Turkish   Polish   Dutch   Czech   Swedish   Hungarian   Danish   Hebrew

Production Catalog Available in 36 Countries & Languages


Recent Research & Development for Tin

  • The use of isotopically enriched tin tracers to follow the transformation of organotin compounds in landfill leachate. Peeters K, Zuliani T, Scancar J, Milacic R. Water Res. 2014.
  • The role of surface and deep-level defects on the emission of tin oxide quantum dots. Kumar V, Kumar V, Som S, Neethling JH, Lee M, Ntwaeaborwa OM, Swart HC. Nanotechnology. 2014 Apr.
  • Experimental design based response surface methodology optimization of ultrasonic assisted adsorption of safaranin O by tin sulfide nanoparticle loaded on activated carbon. Roosta M, Ghaedi M, Daneshfar A, Sahraei R. Spectrochim Acta A Mol Biomol Spectrosc. 2014 Mar.
  • Inorganic tin compounds do not induce micronuclei in human lymphocytes in the absence of metabolic activation. Damati A, Vlastos D, Philippopoulos AI, Matthopoulos DP. Drug Chem Toxicol. 2014.
  • Synthesis, characterization and antibacterial activity of cellulose acetate-tin (IV) phosphate nanocomposite. Rathore BS, Sharma G, Pathania D, Gupta VK. Carbohydr Polym. 2014 Mar.
  • Application of ZnO/graphene and S6 aptamers for sensitive photoelectrochemical detection of SK-BR-3 breast cancer cells based on a disposable indium tin oxide device. Liu F, Zhang Y, Yu J, Wang S, Ge S, Song X. Biosens Bioelectron. 2014 Jan.
  • Electrochemical serotonin monitoring of poly(ethylenedioxythiophene):poly(sodium 4-styrenesulfonate)-modified fluorine-doped tin oxide by predeposition of self-assembled 4-pyridylporphyrin. Song MJ, Kim S, Ki Min N, Jin JH. Biosens Bioelectron. 2014 Feb.
  • Four coordinate tin complexes: Synthesis, characterization, thermodynamic and theoretical calculations. Mohammadikish M. Spectrochim Acta A Mol Biomol Spectrosc. 2014 Jan.
  • A visible light photoelectrochemical sensor for tumor marker detection using tin dioxide quantum dot-graphene as labels. Analyst. 2013 create date:2013/10/18 | first author:Wang Y
  • Optimization of a hydride generation metallic furnace atomic absorption spectrometry (HG-MF-AAS) method for tin determination: Analytical and morphological parameters of a metallic atomizer. Moretto Galazzi R, Arruda MA. Talanta. 2013 Dec.
  • Immune stimulation following dermal exposure to unsintered indium tin oxide. J Immunotoxicol. 2013 create date:2013/10/30 | first author:Brock K.
  • Gallium-Doped Tin Oxide Nano-Cuboids for Improved Dye Sensitized Solar Cell. ACS Appl Mater Interfaces. 2013 | first author:Teh JJ
  • Inorganic tin compounds do not induce micronuclei in human lymphocytes in the absence of metabolic activation. Drug Chem Toxicol. | first author:Damati A
  • Fabrication of Highly Transparent and Conductive Indium-Tin Oxide Thin Films with a High Figure of Merit via Solution Processing. Langmuir. | first author:Chen Z
  • Comparison between GC-MS and GC-ICPMS using isotope dilution for the simultaneous monitoring of inorganic and methyl mercury, butyl and phenyl tin compounds in biological tissues. Anal Bioanal Chem. 2013 create date:2013/10/19 | first author:Cavalheiro J
  • Interconnected Tin Disulfide Nanosheets Grown on Graphene for Li-ion Storage and Photocatalytic Applications. ACS Appl Mater Interfaces. 2013 | first author:Chen P
  • Mitigation of CO poisoning on functionalized Pt-TiN surfaces. Phys Chem Chem Phys. 2013 | first author:Zhang RQ
  • Cytochrome P450 Modified Polycrystalline Indium Tin Oxide Film as a Drug Metabolizing Electrochemical Biosensor with a Simple Configuration. Anal Chem. 2013 | first author:Yoshioka K
  • New understanding of hardening mechanism of TiN/SiNx-based nanocomposite films. Nanoscale Res Lett. 2013 | first author:Li W
  • Micro-Fabricated Tin-Film Electrodes for Protein and DNA Sensing Based on Stripping Voltammetric Detection of Cd(II) Released from Quantum Dots Labels. Anal Chem. 2013 | first author:Kokkinos C
  • Electrochemical serotonin monitoring of poly(ethylenedioxythiophene):poly(sodium 4-styrenesulfonate)-modified fluorine-doped tin oxide by predeposition of self-assembled 4-pyridylporphyrin. Biosens Bioelectron. 2013 | first author:Song MJ