Skip to Page Content

Thallium Plate

High Purity Tl Plate
CAS 10102-45-1


Product Product Code Request Quote
(2N) 99% Thallium Plate TL-M-02-PL Request Quote
(3N) 99.9% Thallium Plate TL-M-03-PL Request Quote
(4N) 99.99% Thallium Plate TL-M-04-PL Request Quote
(5N) 99.999% Thallium Plate TL-M-05-PL Request Quote

CHEMICAL
IDENTIFIER
Formula CAS No. PubChem SID PubChem CID MDL No. EC No Beilstein
Re. No.
SMILES
Identifier
InChI
Identifier
InChI
Key
Tl 10102-45-1 24856794 5359464 MFCD00134063  231-138-1 N/A [Tl] InChI=1S/Tl BKVIYDNLLOSFOA-UHFFFAOYSA-N

PROPERTIES Mol. Wt. Appearance Density Tensile Strength Melting Point Boiling Point Thermal Conductivity Electrical Resistivity Eletronegativity Specific Heat Heat of Vaporization Heat of Fusion MSDS
204.37 White Crystals 11.85 gm/cc N/A 303.5 °C 1457 °C 0.461 W/cm/K @ 298.2 K  18.0 microhm-cm @ 0 °C 1.8 Paulings 0.0307 Cal/g/K @ 25°C 38.8 K-Cal/gm atom at 1457°C 1.03 Cal/gm mole  Safety Data Sheet

See research below. American Elements specializes in producing Thallium as plates in various thicknesses and sizes. Most plates are cast for use in coating and thin film Chemical Vapor Deposition (CVD) and Physical Vapor Deposition (PVD) processes including Thermal and Electron Beam (E-Beam) Evaporation, Low Temperature Organic Evaporation, Atomic Layer Deposition (ALD), Organometallic and Chemical Vapor Deposition (MOCVD) for specific applications such as fuel cells and solar energy.Thicknesses start at 0.25" for all metals. Materials are produced using crystallization, solid state and other ultra high purification processes such as sublimation. American Elements specializes in producing custom compositions for commercial and research applications and for new proprietary technologies. American Elements also casts any of the rare earth metals and most other advanced materials into rod, bar, or plate form, as well as other machined shapes and through other processes such as nanoparticles () and in the form of solutions and organometallics. We also produce Thallium as rods, powder and plates. Other shapes are available by request.

Thallium (Tl) atomic and molecular weight, atomic number and elemental symbolThallium (atomic symbol: Tl, atomic number: 81) is a Block P, Group 13, Period 6 element with an atomic weight of 204.38.Thallium Bohr Model The number of electrons in each of thallium's shells is 2, 8, 18, 32, 18, 3 and its electron configuration is [Xe] 4f14 5d10 6s2 6p1. The thallium atom has a radius of 170 pm and a Van der Waals radius of 196 pm. Thallium was discovered by Sir William Crookes in 1861 and first isolated by Claude-Auguste Lamy in 1862. Thallium is a post-transition metal that is not found free in nature. Thallium is primarily used for its electrical conductivity as thallium sulfide, which changes with exposure to infrared light. This ability makes the compound useful in photocells.Elemental Thallium Thallium bromide-iodide crystals have been used as infrared optical materials. Thallium has also been used with sulfur, selenium or arsenic to produce low melting glasses which become fluid between 125 and 150 °C, while thallium oxide has been used to produce glasses with a high index of refraction, and is also used in the manufacture of photo cells. Its name is drived from the Greek word thallos, which means twig or green shoot. For more information on thallium, including properties, safety data, research, and American Elements' catalog of thallium products, visit the Thallium element page.

HEALTH, SAFETY & TRANSPORTATION INFORMATION
Danger
H300-H330-H373-H413 
T+
26/28-33-53 
13-28-45-61 
XG3425000
UN 3288 6.1/PG 2
3
Skull and Crossbones-Acute Toxicity  Health Hazard      

CUSTOMERS FOR THALLIUM PLATE HAVE ALSO LOOKED AT
Thallium Oxide Thallium Sputtering Target Thallium Chloride Thallium Powder Thallium Metal
Thallium Molybdate Thallium Wire Thallium Pellets Thallium Acetate Thallium Foil
Thallium Oxide Nanopowder Thallium Acetylacetonate Thallium Chromate Thallium Oxide Pellets Thallium Nitrate
Show Me MORE Forms of Thallium

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis

Recent Research & Development for Titanium

  • Effect of Repeated Simulated Clinical Use and Sterilization on the Cutting Efficiency and Flexibility of Hyflex CM Nickel-Titanium Rotary Files. Seago ST, Bergeron BE, Kirkpatrick TC, Roberts MD, Roberts HW, Himel VT, Sabey KA. J Endod. 2015 Mar 3.
  • Cellular Responses Evoked by Different Surface Characteristics of Intraosseous Titanium Implants. Feller L, Jadwat Y, Khammissa RA, Meyerov R, Schechter I, Lemmer J. Biomed Res Int. 2015
  • Airborne-particle abrasion parameters on the quality of titanium-ceramic bonds. Go??biowski M, Wo?owiec E, Klimek PL. J Prosthet Dent. 2015 Mar 4.
  • Enhancing osteoblast-affinity of titanium scaffolds for bone engineering by use of ultraviolet light treatment. Ishijima M, Soltanzadeh P, Hirota M, Tsukimura N, Shigami T, Ogawa T. Biomed Res. 2015
  • Bone tissue response to plasma-nitrided titanium implant surfaces. Ferraz EP, Sverzut AT, Freitas GP, Sá JC, Alves C Jr, Beloti MM, Rosa AL. J Appl Oral Sci. 2015 Jan-Feb
  • Antifouling coatings for dental implants: Polyethylene glycol-like coatings on titanium by plasma polymerization. Buxadera-Palomero J, Canal C, Torrent-Camarero S, Garrido B, Javier Gil F, Rodríguez D. Biointerphases. 2015 Jun 12
  • Comparing a series of 8-quinolinolato complexes of aluminium, titanium and zinc as initiators for the ring-opening polymerization of rac-lactide. Bakewell C, Fateh-Iravani G, Beh DW, Myers D, Tabthong S, Hormnirun P, White AJ, Long N, Williams CK. Dalton Trans. 2015 Mar 6.
  • Cyclic Fatigue Resistance of 3 Different Nickel-Titanium Reciprocating Instruments in Artificial Canals. Higuera O, Plotino G, Tocci L, Carrillo G, Gambarini G, Jaramillo DE. J Endod. 2015 Mar 11.
  • [A long-term study regarding the therapeutic effect of two titanium screw fixation for femoral neck fractures]. Zhou Z, Shen Y, Huang S. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2015 Feb
  • Tribocorrosion behavior of beta titanium biomedical alloys in phosphate buffer saline solution. Pina VG, Dalmau A, Devesa F, Amigó V, Muñoz AI. J Mech Behav Biomed Mater. 2015 Feb 26
  • Intermolecular Reductive Coupling of Esters with Benzophenones by Low-valent Titanium: Synthesis of Diarylmethyl ketones Revisited. Kise N, Sakurai T. J Org Chem. 2015 Mar 6.
  • Dependence of capillary forces on relative humidity and the surface properties of femtosecond laser micromachined titanium. Lehr J, Kietzig AM. J Colloid Interface Sci. 2015 Feb 23
  • Performance of Porous Tantalum vs. Titanium Cup in Total Hip Arthroplasty: Randomized Trial with Minimum 10-Year Follow-Up. Wegrzyn J, Kaufman KR, Hanssen AD, Lewallen DG. J Arthroplasty. 2015 Jan 21.
  • Mitochondrial dysfunction in titanium dioxide nanoparticle-induced neurotoxicity. Nalika N, Parvez S. Toxicol Mech Methods. 2015 Mar 16:1-9.
  • The Effect of Taper Angle and Spline Geometry on the Initial Stability of Tapered, Splined Modular Titanium Stems. Pierson JL, Small SR, Rodriguez JA, Kang MN, Glassman AH. J Arthroplasty. 2015 Feb 7.
  • Influence of various superhydrophilic treatments of titanium on the initial attachment, proliferation, and differentiation of osteoblast-like cells. Yamamura K, Miura T, Kou I, Muramatsu T, Furusawa M, Yoshinari M. Dent Mater J. 2015 Feb 3
  • Concentration-driven phase control for low temperature synthesis of phase-pure anatase and rutile titanium oxide. Wang Z, Xiao C, Yamada S, Yoshinaga K, Bu XR, Zhang M. J Colloid Interface Sci. 2015 Feb 9
  • Titanium mesh as a low-profile alternative for tension-band augmentation in patella fracture fixation: A biomechanical study. Dickens AJ, Salas C, Rise L, Murray-Krezan C, Taha MR, DeCoster TA, Gehlert RJ. Injury. 2015 Feb 26.
  • Low-Voltage Flexible Organic Electronics Based on High Performance Sol-Gel Titanium Dioxide Dielectric. Sung S, Park S, Lee WJ, Son J, Kim CH, Yoon MH. ACS Appl Mater Interfaces. 2015 Mar 9.
  • Visible light Caffeic acid degradation by carbon-doped titanium dioxide. Venditti F, Cuomo F, Ceglie A, Avino P, Russo MV, Lopez F. Langmuir. 2015 Mar 12.