Skip to Page Content

Thallium Selenide

High Purity Tl2Se
CAS 1315-08-8

Product Product Code Request Quote
(5N) 99.999% Thallium Selenide Powder TL-SE-05-P Request Quote
(5N) 99.999% Thallium Selenide Ingot TL-SE-05-I Request Quote
(5N) 99.999% Thallium Selenide Chunk TL-SE-05-CK Request Quote
(5N) 99.999% Thallium Selenide Lump TL-SE-05-L Request Quote
(5N) 99.999% Thallium Selenide Sputtering Target TL-SE-05-ST Request Quote
(5N) 99.999% Thallium Selenide Wafer TL-SE-05-WSX Request Quote

Formula CAS No. PubChem SID PubChem CID MDL No. EC No IUPAC Name Beilstein
Re. No.
Tl2Se 1315-08-8 43526785 6914514 N/A 239-627-1 selenium; thallium N/A [Tl+].[Tl+].[Se-2] InChI=1S/Se.2Tl/q-2;2*+1 KLNGSAIQZVCZLH-UHFFFAOYSA-N

PROPERTIES Compound Formula Mol. Wt. Appearance Melting Point Boiling Point Density Exact Mass Monoisotopic Mass Charge MSDS
SeTl2 487.7266 N/A 380.85 °C
(717.53 °F)
N/A 9.05 g/cm3 489.865346 489.865326 Da 0 Safety Data Sheet

Selenide IonThallium Selenide (TlSe) is a crystal grown product generally immediately available in most volumes. Technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement.

Thallium (Tl) atomic and molecular weight, atomic number and elemental symbolThallium (atomic symbol: Tl, atomic number: 81) is a Block P, Group 13, Period 6 element with an atomic weight of 204.38.Thallium Bohr Model The number of electrons in each of thallium's shells is 2, 8, 18, 32, 18, 3 and its electron configuration is [Xe] 4f14 5d10 6s2 6p1. The thallium atom has a radius of 170 pm and a Van der Waals radius of 196 pm. Thallium was discovered by Sir William Crookes in 1861 and first isolated by Claude-Auguste Lamy in 1862. Thallium is a post-transition metal that is not found free in nature. Thallium is primarily used for its electrical conductivity as thallium sulfide, which changes with exposure to infrared light. This ability makes the compound useful in photocells.Elemental Thallium Thallium bromide-iodide crystals have been used as infrared optical materials. Thallium has also been used with sulfur, selenium or arsenic to produce low melting glasses which become fluid between 125 and 150 °C, while thallium oxide has been used to produce glasses with a high index of refraction, and is also used in the manufacture of photo cells. Its name is drived from the Greek word thallos, which means twig or green shoot. For more information on thallium, including properties, safety data, research, and American Elements' catalog of thallium products, visit the Thallium element page.

Selenium Bohr ModelSelenide(Se) atomic and molecular weight, atomic number and elemental symbolSelenium (atomic symbol: Se, atomic number: 34) is a Block P, Group 16, Period 4 element with an atomic radius of 78.96. The number of electrons in each of Selenium's shells is 2, 8, 18, 6 and its electron configuration is [Ar] 3d10 4s2 4p4. The selenium atom has a radius of 120 pm and a Van der Waals radius of 190 pm. Selenium is a non-metal with several allotropes: a black, vitreous form with an irregular crystal structure; three red-colored forms with monoclinic crystal structures; and a gray form with a hexagonal crystal structure, the most stable and dense form of the element. Elemental Selenium One of the mose common uses for selenium is in glass production; the red tint that it lends to glass neutralizes green or yellow tints from impurities in the glass materials. Selenium was discovered and first isolated by Jöns Jakob Berzelius and Johann Gottlieb Gahn in 1817. The origin of the name Selenium comes from the Greek word "Selênê," meaning moon. For more information on selenium, including properties, safety data, research, and American Elements' catalog of selenium products, visit the Selenium element page.

Material Safety Data Sheet MSDS
Signal Word N/A
Hazard Statements N/A
Hazard Codes N/A
Risk Codes N/A
Safety Precautions N/A
RTECS Number N/A
Transport Information N/A
WGK Germany N/A
Globally Harmonized System of
Classification and Labelling (GHS)

Dithallium selenide, Thallium(I) Selenide, Thallium selenide (Tl2Se), Thallium(III) selenide, Thallium monoselenide, selenium; thallium

Thallium Oxide Thallium Sputtering Target Thallium Chloride Thallium Powder Thallium Metal
Thallium Molybdate Thallium Wire Thallium Pellets Thallium Acetate Thallium Foil
Thallium Oxide Nanopowder Thallium Acetylacetonate Thallium Chromate Thallium Oxide Pellets Thallium Nitrate
Show Me MORE Forms of Thallium

Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.

Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis

Recent Research & Development for Titanium

  • Effect of Repeated Simulated Clinical Use and Sterilization on the Cutting Efficiency and Flexibility of Hyflex CM Nickel-Titanium Rotary Files. Seago ST, Bergeron BE, Kirkpatrick TC, Roberts MD, Roberts HW, Himel VT, Sabey KA. J Endod. 2015 Mar 3.
  • Cellular Responses Evoked by Different Surface Characteristics of Intraosseous Titanium Implants. Feller L, Jadwat Y, Khammissa RA, Meyerov R, Schechter I, Lemmer J. Biomed Res Int. 2015
  • Airborne-particle abrasion parameters on the quality of titanium-ceramic bonds. Go??biowski M, Wo?owiec E, Klimek PL. J Prosthet Dent. 2015 Mar 4.
  • Enhancing osteoblast-affinity of titanium scaffolds for bone engineering by use of ultraviolet light treatment. Ishijima M, Soltanzadeh P, Hirota M, Tsukimura N, Shigami T, Ogawa T. Biomed Res. 2015
  • Bone tissue response to plasma-nitrided titanium implant surfaces. Ferraz EP, Sverzut AT, Freitas GP, Sá JC, Alves C Jr, Beloti MM, Rosa AL. J Appl Oral Sci. 2015 Jan-Feb
  • Antifouling coatings for dental implants: Polyethylene glycol-like coatings on titanium by plasma polymerization. Buxadera-Palomero J, Canal C, Torrent-Camarero S, Garrido B, Javier Gil F, Rodríguez D. Biointerphases. 2015 Jun 12
  • Comparing a series of 8-quinolinolato complexes of aluminium, titanium and zinc as initiators for the ring-opening polymerization of rac-lactide. Bakewell C, Fateh-Iravani G, Beh DW, Myers D, Tabthong S, Hormnirun P, White AJ, Long N, Williams CK. Dalton Trans. 2015 Mar 6.
  • Cyclic Fatigue Resistance of 3 Different Nickel-Titanium Reciprocating Instruments in Artificial Canals. Higuera O, Plotino G, Tocci L, Carrillo G, Gambarini G, Jaramillo DE. J Endod. 2015 Mar 11.
  • [A long-term study regarding the therapeutic effect of two titanium screw fixation for femoral neck fractures]. Zhou Z, Shen Y, Huang S. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2015 Feb
  • Tribocorrosion behavior of beta titanium biomedical alloys in phosphate buffer saline solution. Pina VG, Dalmau A, Devesa F, Amigó V, Muñoz AI. J Mech Behav Biomed Mater. 2015 Feb 26
  • Intermolecular Reductive Coupling of Esters with Benzophenones by Low-valent Titanium: Synthesis of Diarylmethyl ketones Revisited. Kise N, Sakurai T. J Org Chem. 2015 Mar 6.
  • Dependence of capillary forces on relative humidity and the surface properties of femtosecond laser micromachined titanium. Lehr J, Kietzig AM. J Colloid Interface Sci. 2015 Feb 23
  • Performance of Porous Tantalum vs. Titanium Cup in Total Hip Arthroplasty: Randomized Trial with Minimum 10-Year Follow-Up. Wegrzyn J, Kaufman KR, Hanssen AD, Lewallen DG. J Arthroplasty. 2015 Jan 21.
  • Mitochondrial dysfunction in titanium dioxide nanoparticle-induced neurotoxicity. Nalika N, Parvez S. Toxicol Mech Methods. 2015 Mar 16:1-9.
  • The Effect of Taper Angle and Spline Geometry on the Initial Stability of Tapered, Splined Modular Titanium Stems. Pierson JL, Small SR, Rodriguez JA, Kang MN, Glassman AH. J Arthroplasty. 2015 Feb 7.
  • Influence of various superhydrophilic treatments of titanium on the initial attachment, proliferation, and differentiation of osteoblast-like cells. Yamamura K, Miura T, Kou I, Muramatsu T, Furusawa M, Yoshinari M. Dent Mater J. 2015 Feb 3
  • Concentration-driven phase control for low temperature synthesis of phase-pure anatase and rutile titanium oxide. Wang Z, Xiao C, Yamada S, Yoshinaga K, Bu XR, Zhang M. J Colloid Interface Sci. 2015 Feb 9
  • Titanium mesh as a low-profile alternative for tension-band augmentation in patella fracture fixation: A biomechanical study. Dickens AJ, Salas C, Rise L, Murray-Krezan C, Taha MR, DeCoster TA, Gehlert RJ. Injury. 2015 Feb 26.
  • Low-Voltage Flexible Organic Electronics Based on High Performance Sol-Gel Titanium Dioxide Dielectric. Sung S, Park S, Lee WJ, Son J, Kim CH, Yoon MH. ACS Appl Mater Interfaces. 2015 Mar 9.
  • Visible light Caffeic acid degradation by carbon-doped titanium dioxide. Venditti F, Cuomo F, Ceglie A, Avino P, Russo MV, Lopez F. Langmuir. 2015 Mar 12.

Recent Research & Development for Selenides

  • Superior photoluminescence (PL) of Pr³+-In, compared to Pr³+-Ga, selenide-chalcogenide bulk glasses and PL of optically-clad fiber. Sakr H, Furniss D, Tang Z, Sojka L, Moneim NA, Barney E, Sujecki S, Benson TM, Seddon AB. Opt Express. 2014 Sep 8
  • Revealing the preferred interlayer orientations and stackings of two-dimensional bilayer gallium selenide crystals. Li X, Basile L, Yoon M, Ma C, Puretzky AA, Lee J, Idrobo JC, Chi M, Rouleau CM, Geohegan DB, Xiao K. Angew Chem Int Ed Engl. 2015 Feb 23
  • Phase diagram of (Li(1-x)Fe(x))OHFeSe: a bridge between iron selenide and arsenide superconductors. Dong X, Zhou H, Yang H, Yuan J, Jin K, Zhou F, Yuan D, Wei L, Li J, Wang X, Zhang G, Zhao Z. J Am Chem Soc. 2015 Jan 14
  • A hybrid linkage mode between T2,2 and T3 selenide clusters. Han X, Xu J, Wang Z, Liu D, Wang C. Chem Commun (Camb). 2015 Feb 17
  • Redox control of GPx catalytic activity through mediating self-assembly of Fmoc-phenylalanine selenide into switchable supramolecular architectures. Huang Z, Luo Q, Guan S, Gao J, Wang Y, Zhang B, Wang L, Xu J, Dong Z, Liu J. Soft Matter. 2014 Dec 28
  • Lifetime, mobility, and diffusion of photoexcited carriers in ligand-exchanged lead selenide nanocrystal films measured by time-resolved terahertz spectroscopy. Guglietta GW, Diroll BT, Gaulding EA, Fordham JL, Li S, Murray CB, Baxter JB. ACS Nano. 2015 Feb 24
  • Simulations of silver-doped germanium-selenide glasses and their response to radiation. Prasai K, Drabold DA. Nanoscale Res Lett. 2014 Oct 29
  • Soft Chemical Control of Superconductivity in Lithium Iron Selenide Hydroxides Li1-xFex(OH)Fe1-ySe. Sun H, Woodruff DN, Cassidy SJ, Allcroft GM, Sedlmaier SJ, Thompson AL, Bingham PA, Forder SD, Cartenet S, Mary N, Ramos S, Foronda FR, Williams BH, Li X, Blundell SJ, Clarke SJ. Inorg Chem. 2015 Feb 16
  • Tailoring the exciton fine structure of cadmium selenide nanocrystals with shape anisotropy and magnetic field. Sinito C, Fernée MJ, Goupalov SV, Mulvaney P, Tamarat P, Lounis B. ACS Nano. 2014 Nov 25
  • Efficient and ultrafast formation of long-lived charge-transfer exciton state in atomically thin cadmium selenide/cadmium telluride type-II heteronanosheets. Wu K, Li Q, Jia Y, McBride JR, Xie ZX, Lian T. ACS Nano. 2015 Jan 27
  • Aqueous preparation of surfactant-free copper selenide nanowires. Chen X, Li Z, Yang J, Sun Q, Dou S. J Colloid Interface Sci. 2015 Mar 15
  • Transparent metal selenide alloy counter electrodes for high-efficiency bifacial dye-sensitized solar cells. Duan Y, Tang Q, Liu J, He B, Yu L. Angew Chem Int Ed Engl. 2014 Dec 22
  • Disodium diselenide in colloidal nanocrystals: acting as an anion exchange precursor, a metal selenide precursor, and a chalcogenide ligand. Choi D, Lee S, Lee J, Cho KS, Kim SW. Chem Commun (Camb). 2015 Jan 18
  • Mono and digallium selenide clusters as potential superhalogens. Seeburrun N, Archibong EF, Ramasami P. J Mol Model. 2015 Mar
  • Cadmium telluride (CdTe) and cadmium selenide (CdSe) leaching behavior and surface chemistry in response to pH and O2. Zeng C, Ramos-Ruiz A, Field JA, Sierra-Alvarez R. J Environ Manage. 2015 Feb 21
  • Laser-activated gold catalysts for liquid-phase growth of cadmium selenide nanowires. Huang C, Mao J, Chen XM, Yang J, Du XW. Chem Commun (Camb). 2015 Feb 7
  • Lead selenide quantum dot polymer nanocomposites. Waldron DL, Preske A, Zawodny JM, Krauss TD, Gupta MC. Nanotechnology. 2015 Feb 20
  • Transparent nickel selenide alloy counter electrodes for bifacial dye-sensitized solar cells exceeding 10% efficiency. Duan Y, Tang Q, He B, Li R, Yu L. Nanoscale. 2014 Nov 7
  • Thin-film copper indium gallium selenide solar cell based on low-temperature all-printing process. Singh M, Jiu J, Sugahara T, Suganuma K. ACS Appl Mater Interfaces. 2014 Sep 24
  • An amphiphilic selenide catalyst behaves like a hybrid mimic of protein disulfide isomerase and glutathione peroxidase 7. Arai K, Moriai K, Ogawa A, Iwaoka M. Chem Asian J. 2014 Dec