Skip to Page Content

Trimethylaluminum

C3H9Al
CAS 75-24-1


Product Product Code Request Quote
(2N) 99% Trimethylaluminum      AL-TME-02 Request Quote
(3N) 99.9% Trimethylaluminum AL-TME-03 Request Quote
(4N) 99.99% Trimethylaluminum AL-TME-04 Request Quote
(5N) 99.999% Trimethylaluminum AL-TME-05 Request Quote

CHEMICAL
IDENTIFIER
Formula CAS No. PubChem SID PubChem CID MDL No. EC No IUPAC Name Beilstein
Re. No.
SMILES
Identifier
InChI
Identifier
InChI
Key
(CH3)3 Al 75-24-1 37335082 16682925 MFCD00009015 200-853-0 trimethylalumane 3587197 C[Al](C)C InChI=1S/3CH3.Al/h3*1H3; JLTRXTDYQLMHGR-UHFFFAOYSA-N

PROPERTIES Compound Formula Mol. Wt. Appearance Melting Point Boiling Point Density Exact Mass Monoisotopic Mass Charge MSDS
C3H9Al 72.09 Colorless iquid 15 °C 125-126°C 0.752 g/mL 72.051964 72.051964 0 Safety Data Sheet

Trimethylaluminum (TMA) is a precursor for Aluminum Oxide deposition and is the most popular aluminum precursor used for the production of Metal-Organic Vapor-Phase Epitaxy. Trimethylaluminum is also used as a methylation agent and is often released from sounding rockets as a tracer in studies of upper atmospheric wind patterns. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. See safety data and research below and pricing/lead time above. Trimethylaluminium is available in a wide range of ultra-high purity grades. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement.

Aluminum (Al) atomic and molecular weight, atomic number and elemental symbolAluminum, also known as Aluminium, (atomic symbol: Al, atomic number: 13) is a Block P, Group 13, Period 3 element with an atomic weight of 26.9815386. It is the third most abundant element in the earth's crust and the most abundant metallic element.Aluminum Bohr ModelAluminum's name is derived from alumina, the mineral from which Sir Humphrey Davy attempted to refine it from in 1812. It wasn't until 1825 that Aluminum was first isolated by Hans Christian Oersted. Aluminum is a silvery gray metal that possesses many desirable characteristics. It is light, nonmagnetic and non-sparking. It stands second among metals in the scale of malleability, and sixth in ductility. It is extensively used in many industrial applications where a strong, light, easily constructed material is needed. Elemental Aluminum Although it has only 60% of the electrical conductivity of copper, it is used in electrical transmission lines because of its light weight. Pure aluminum is soft and lacks strength, but alloyed with small amounts of copper, magnesium, silicon, manganese, or other elements it imparts a variety of useful properties. Aluminum was first predicted by Antoine Lavoisierin 1787 and first isolated by Friedrich Wöhler in 1827. For more information on aluminum, including properties, safety data, research, and American Elements' catalog of aluminum products, visit the Aluminum element page.

HEALTH, SAFETY & TRANSPORTATION INFORMATION
Material Safety Data Sheet MSDS
Signal Word Danger
Hazard Statements H250-H260-H314
Hazard Codes F,C
Risk Codes 14-17-34
Safety Precautions 16-43-45
RTECS Number BD2050000
Transport Information UN 3394 4.2/PG 1
WGK Germany 3
Globally Harmonized System of
Classification and Labelling (GHS)
Corrosion-Corrosive to metals Flame-Flammables      

TRIMETHYLALUMINUM SYNONYMS
Aluminum trimethanide; TMA; AlMe3; Aluminum trimethanide; aluminum, trimethyl-; Trimethylalane

CUSTOMERS FOR TRIMETHYLALUMINUM HAVE ALSO LOOKED AT
Aluminum Wire Aluminum Copper Silicon Metal Aluminum Oxide Pellets Aluminum Metal Aluminum Acetate
Aluminum Foil Aluminum Acetylacetonate Aluminum Pellets Aluminum Vanadium Alloy Aluminum Chloride
Aluminum Nanoparticles Aluminum Powder Aluminum Sputtering Target Aluminum Nitrate Aluminum Oxide
Show Me MORE Forms of Aluminum

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis

Recent Research & Development for Aluminum

  • Facile and environmentally friendly solution-processed aluminum oxide dielectric for low-temperature, high-performance oxide thin-film transistors. Wangying Xu, Han Wang, Fangyan Xie, Jian Chen, Hong Tao Cao, and Jianbin Xu. ACS Appl. Mater. Interfaces: February 13, 2015
  • Effect of the Polymer Concentration on the Rayleigh-Instability-Type Transformation in Polymer Thin Films Coated in the Nanopores of Anodic Aluminum Oxide Templates. Chia-Chan Tsai and Jiun-Tai Chen. Langmuir: February 5, 2015
  • Structural Origin of Unusual CO2 Adsorption Behavior of a Small-Pore Aluminum Bisphosphonate MOF. Philip L. Llewellyn, Miquel Garcia-Rates, Lucia Gaberová, Stuart R. Miller, Thomas Devic, Jean-Claude Lavalley, Sandrine Bourrelly, Emily Bloch, Yaroslav Filinchuk, Paul A. Wright, Christian Serre, Alexandre Vimont, and Guillaume Maurin. J. Phys. Chem. C: February 4, 2015
  • Engineered Therapeutic-Releasing Nanoporous Anodic Alumina-Aluminum Wires with Extended Release of Therapeutics. Cheryl Suwen Law, Abel Santos, Tushar Kumeria, and Dusan Losic. ACS Appl. Mater. Interfaces: January 27, 2015
  • Proton and Aluminum Binding Properties of Organic Acids in Surface Waters of the Northeastern U.S.. Habibollah Fakhraei and Charles T. Driscoll. Environ. Sci. Technol.: January 27, 2015
  • Anchoring and Bending of Pentacene on Aluminum. Anu Baby, Guido Fratesi, Shital R. Vaidya, Laerte L. Patera, Cristina Africh, Luca Floreano, and Gianpaolo Brivio. J. Phys. Chem. C: January 27, 2015
  • Insertion of Benzonitrile into Al–N and Ga–N Bonds: Formation of Fused Carbatriaza-Gallanes/Alanes and Their Subsequent Synthesis from Amidines and Trimethyl-Gallium/Aluminum. K. Maheswari, A. Ramakrishna Rao, and N. Dastagiri Reddy. Inorg. Chem.: January 26, 2015
  • Mild Dehydrogenation of Ammonia Borane Complexed with Aluminum Borohydride. Iurii Dovgaliuk, Cécile S. Le Duff, Koen Robeyns, Michel Devillers, and Yaroslav Filinchuk. Chem. Mater.: January 15, 2015
  • The Formation Mechanism of 3D Porous Anodized Aluminum Oxide Templates from an Aluminum Film with Copper Impurities. Johannes Vanpaemel, Alaa M. Abd-Elnaiem, Stefan De Gendt, and Philippe M. Vereecken. J. Phys. Chem. C: January 7, 2015
  • Hydrothermal Synthesis and Characterization of Aluminum-Free Mn- Zeolite: A Catalyst for Phenol Hydroxylation. Zhen He, Juan Wu, Bingying Gao, and Hongyun He. ACS Appl. Mater. Interfaces: January 3, 2015