Skip to Page Content

Tungsten Shot

High Purity W Shot
CAS 7440-33-7

Product Product Code Request Quote
(2N) 99% Tungsten Shot W-M-02-SHO Request Quote
(3N) 99.9% Tungsten Shot W-M-03-SHO Request Quote
(4N) 99.99% Tungsten Shot W-M-04-SHO Request Quote
(5N) 99.999% Tungsten Shot W-M-05-SHO Request Quote

Formula CAS No. PubChem CID MDL No. EC No Beilstein
Re. No.
W 7440-33-7 23964 MFCD00011461  231-143-9 N/A [W] InChI=1S/W WFKWXMTUELFFGS-UHFFFAOYSA-N

PROPERTIES Mol. Wt. Appearance Density Tensile Strength Melting Point Boiling Point Thermal Conductivity Electrical Resistivity Electronegativity Specific Heat Heat of Vaporization Heat of Fusion MSDS
183.85 Silvery 19.3 g/cm3 750 MPa 3410 °C 5900 °C 1.73
W/m K
5.65 μΩ·m (27°C) 1.7 Paulings 0.133
J/g mol (20°C)
35.3 kJ/mol Safety Data Sheet

American Elements specializes in producing high purity Tungsten Shot with the highest possible density and smallest possible average grain sizes for use in semiconductor, Chemical Vapor Deposition (CVD) and Physical Vapor Deposition (PVD) processes including Thermal and Electron Beam (E-Beam) Evaporation, Low Temperature Organic Evaporation, Atomic Layer Deposition (ALD), Metallic-Organic and Chemical Vapor Deposition (MOCVD). Our standard Shot sizes range from 1-3mm . We can also provide Shot outside this range for ultra high purity thin film applications, such as fuel cells and solar energy layers. Materials are produced using crystallization , solid state and other ultra high purification processes such as sublimation. American Elements specializes in producing custom compositions for commercial and research applications and for new proprietary technologies. American Elements also casts any of the rare earth metals and most other advanced materials into rod, bar or plate form , as well as other machined shapes and through other processes such as nanoparticles and in the form of solutions and organometallics. We also produce Tungsten as powder, ingot, pieces, pellets, disc, granules, wire, and in compound forms, such as oxide. Other shapes are available by request.

Tungsten (W) and molecular weight, atomic number and elemental symbolTungsten (atomic symbol: W, atomic number: 74) is a Block D, Group 6, Period 6 element with an atomic weight of 183.84. The number of electrons in each of tungsten's shells is [2, 8, 18, 32, 12, 2] and its electron configuration is [Xe] 4f14 5d4 6s2. Tungsten Bohr Model The tungsten atom has a radius of 139 pm and a Van der Waals radius of 210 pm. Tungsten was discovered by Torbern Bergman in 1781 and first isolated by Juan José Elhuyar and Fausto Elhuyar in 1783. In its elemental form, tungsten has a grayish white, lustrous appearance.Elemental Tungsten Tungsten has the highest melting point of all the metallic elements and a density comparable to that or uranium or gold and about 1.7 times that of lead. Tungsten alloys are often used to make filaments and targets of x-ray tubes. It is found in the minerals scheelite (CaWO4) and wolframite [(Fe,Mn)WO4]. In reference to its density, Tungsten gets its name from the Swedish words tung and sten, meaning heavy stone. For more information on tungsten, including properties, safety data, research, and American Elements' catalog of tungsten products, visit the Tungsten element page.

Material Safety Data Sheet MSDS
Signal Word Danger
Hazard Statements H228-H315-H319
Hazard Codes N/A
Risk Codes N/A
Safety Precautions N/A
RTECS Number YO7175000
Transport Information N/A
WGK Germany 3
Globally Harmonized System of
Classification and Labelling (GHS)
Exclamation Mark-Acute Toxicity Flame-Flammables      

Tungsten Powder Tungsten Wire Tungsten Nickel Iron Molybdenum Alloy Tungsten Metal Tungsten Copper Alloy
Tungsten Sheet Tungsten Fluoride Tungsten Foil Tungsten Bar Tungsten Sputtering Target
Tungsten Oxide Pellets Tungsten Oxide Tungsten Chloride Tungsten Pellets Tungsten Nanoparticles
Show Me MORE Forms of Tungsten

Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.

Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis

Recent Research & Development for Tungsten

  • Ultrafast and Low Temperature Synthesis of Highly Crystalline and Patternable Few-Layers Tungsten Diselenide by Laser Irradiation Assisted-Selenization Process. Chen YZ, Medina H, Su TY, Li JG, Cheng KY, Chiu PW, Chueh YL. ACS Nano. 2015 Mar 13.
  • One-step Breaking and Separating Emulsion by Tungsten Oxide Coated Mesh. Lin X, Lu F, Chen Y, Liu N, Cao Y, Xu L, Wei Y, Feng L. ACS Appl Mater Interfaces. 2015 Mar 10.
  • Effect of local A-site strain on dipole stability in A6GaNb9O30 (A = Ba, Sr, Ca) tetragonal tungsten bronze relaxor dielectrics. Miller AJ, Rotaru A, Arnold DC, Morrison FD. Dalton Trans. 2015 Feb 17.
  • Tungsten oxide - fly ash oxide composites in adsorption and photocatalysis. Visa M, Bogatu C, Duta A. J Hazard Mater. 2015 Jan 28
  • Layer-Dependent Modulation of Tungsten Disulfide Photoluminescence by Lateral Electric Fields. He Z, Sheng Y, Rong Y, Lee GD, Li J, Warner JH. ACS Nano. 2015 Feb 23.
  • Electronic effects in high-energy radiation damage in tungsten. Zarkadoula E, Duffy DM, Nordlund K, Seaton MA, Todorov IT, Weber WJ, Trachenko K. J Phys Condens Matter. 2015 Mar 13
  • Enantioenrichment of a Tungsten Dearomatization Agent Utilizing Chiral Acids. Lankenau AW, Iovan DA, Pienkos JA, Salomon RJ, Wang S, Harrison DP, Myers WH, Harman WD. J Am Chem Soc. 2015 Mar 6.
  • Application of tungsten as a carbon sink for synthesis of large-domain uniform monolayer graphene free of bilayers/multilayers. Fang W, Hsu A, Shin YC, Liao A, Huang S, Song Y, Ling X, Dresselhaus MS, Palacios T, Kong J. Nanoscale. 2015 Mar 4
  • Photophysical Studies of Metal to Ligand Charge Transfer Involving Quadruply Bonded Complexes of Molybdenum and Tungsten. Chisholm MH, Brown-Xu SE, Spilker TF. Acc Chem Res. 2015 Feb 19.
  • Ligand assisted carbon dioxide activation and hydrogenation using molybdenum and tungsten amides. Chakraborty S, Blacque O, Berke H. Dalton Trans. 2015 Mar 10.
  • In situ atomic-scale observation of twinning-dominated deformation in nanoscale body-centred cubic tungsten. Wang J, Zeng Z, Weinberger CR, Zhang Z, Zhu T, Mao SX. Nat Mater. 2015 Mar 9.
  • An update to the toxicological profile for water-soluble and sparingly soluble tungsten substances. Lemus R, Venezia CF. Crit Rev Toxicol. 2015 Feb 19:1-24.
  • Nanosheets: tungsten oxide single crystal nanosheets for enhanced multichannel solar light harvesting (adv. Mater. 9/2015). Yan J, Wang T, Wu G, Dai W, Guan N, Li L, Gong J. Adv Mater. 2015 Mar
  • On the mechanism of catalytic hydrogenation of thiophene on hydrogen tungsten bronze. Xi Y, Chen Z, Gan Wei Kiat V, Huang L, Cheng H. Phys Chem Chem Phys. 2015 Mar 16.
  • Optical and infrared properties of glancing angle-deposited nanostructured tungsten films. Ungaro C, Shah A, Kravchenko I, Hensley DK, Gray SK, Gupta MC. Opt Lett. 2015 Feb 15
  • Tungsten carbonyl σ-complexes with charge-compensated nido-carboranyl thioether ligands. Timofeev SV, Zhidkova OB, Mosolova EM, Sivaev IB, Godovikov IA, Suponitsky KY, Starikova ZA, Bregadze VI. Dalton Trans. 2015 Mar 9.
  • pH-controllable synthesis of unique nanostructured tungsten oxide aerogel and its sensitive glucose biosensor. Sun QQ, Xu M, Bao SJ, Ming Li C. Nanotechnology. 2015 Mar 20
  • CORRIGENDUM: Recrystallization and grain growth induced by ELMs-like transient heat loads in deformed tungsten samples. Suslova A, El-Atwani O, Sagapuram D, Harilal SS, Hassanein A. Sci Rep. 2015 Mar 12
  • Tungsten trioxide nanoplate array supported platinum as a highly efficient counter electrode for dye-sensitized solar cells. Song D, Cui P, Zhao X, Li M, Chu L, Wang T, Jiang B. Nanoscale. 2015 Mar 6.
  • Structure of superhard tungsten tetraboride: A missing link between MB2 and MB12 higher borides. Lech AT, Turner CL, Mohammadi R, Tolbert SH, Kaner RB. Proc Natl Acad Sci U S A. 2015 Mar 2.