Skip to Page Content

Yttrium Acetylacetonate

Y(CH3COCHCOCH3)3 • xH2O
CAS 15554-47-9


Product Product Code Request Quote
(2N) 99% Yttrium Acetylacetonate Y-ACAC-02 Request Quote
(3N) 99.9% Yttrium Acetylacetonate Y-ACAC-03 Request Quote
(4N) 99.99% Yttrium Acetylacetonate Y-ACAC-04 Request Quote
(5N) 99.999% Yttrium Acetylacetonate Y-ACAC-05 Request Quote

CHEMICAL
IDENTIFIER
Formula CAS No. PubChem CID MDL No. EC No IUPAC Name Beilstein
Re. No.
SMILES
Identifier
InChI
Identifier
InChI
Key
Y(CH3COCHCOCH3)3 • xH2O 15554-47-9 16212867 MFCD00216639 N/A (Z)-4-hydro
xypent-3-en-2-one;yttrium
;hydrate
N/A O.O=C(C)\C=
C(\C)O[Y](O
C(\C)=C/C(C)=
O)OC(/C)=
C\C(C)=O
InChI=1S/3C5H
8O2.H2O.Y/c3*1-4(6)3-5(2)7;;/h
3*3,6H,1-2H3;1H2
;/q;;;;+3/p-3/b3*4-3-;;
KGNBFQ
NJCULYHV-KJVLTGTBSA-K

PROPERTIES Compound Formula Mol. Wt. Appearance Density Exact Mass Monoisotopic Mass Charge MSDS
C15H23O7Y 386.24 White-Yellow g/cm3 404.049 g/mol 404.049987792969 Da N/A Safety Data Sheet

Acetylaceton Formula Diagram (C5H8O2)Yttrium Acetylacetonate is a Yttrium source that is soluble in organic solvents as an organometallic compound (also known as metalorganic, organo-inorganic and metallo-organic Acetylacetonate Packaging, Lab Quantitycompounds). The high purity acetylacetonate anion complexes by bonding each oxygen atom to the metallic cation to form a chelate ring; because of this property, acetylacetonates are commonly used in various catalysts and catalytic reagents for organic synthesis, including the fabrication of various shapes of carbon nanostructures (as demonstrated by a 2013 experiment by researchers at the Leibniz Institute for Solid State and Materials Research Dresden) via the use of chemical vapor deposition (CVD) and laser evaporation techniques. Yttrium Acetylacetonate is one of numerous organo-metallic compounds (also known as metalorganic, organo-inorganic and metallo-organic compounds) sold by American Elements under the tradename AE Organo-Metallics™. The numerous commercial applications for Yttrium include ceramics for crucibles for molten reactive metals, in florescent lighting phosphors, computer displays and automotive fuel consumption sensors. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement.

Yttrium Bohr ModelYttrium (Y) atomic and molecular weight, atomic number and elemental symbolYttrium (atomic symbol: Y, atomic number: 39) is a Block D, Group 3, Period 5 element with an atomic weight of 88.90585. The number of electrons in each of yttrium's shells is [2, 8, 18, 9, 2] and its electron configuration is [Kr] 4d1 5s2. The yttrium atom has a radius of 180 pm and a Van der Waals radius of 219 pm. Yttrium was discovered by Johann Gadolin in 1794 and first isolated by Carl Gustav Mosander in 1840. Elemental Yttrium In its elemental form, Yttrium has a silvery white metallic appearance. Yttrium has the highest thermodynamic affinity for oxygen of any element. Yttrium is not found in nature as a free element and is almost always found combined with the lanthanides in rare earth minerals. While not part of the rare earth series, it resembles the heavy rare earths which are sometimes referred to as the "yttrics" for this reason. Another unique characteristic derives from its ability to form crystals with useful properties. The name yttrium originated from a Swedish village near Vaxholm called Yttbery where it was discovered. For more information on yttrium, including properties, safety data, research, and American Elements' catalog of yttrium products, visit the Yttrium element page.

The high purity acetylacetonate anion complexes by bonding each oxygen atom to the metallic cation to form a chelate ring; because of this property, acetylacetonates are commonly used in various catalysts and catalytic reagents for organic synthesis, including the fabrication of various shapes of carbon nanostructures (as demonstrated by a 2013 experiment by researchers at the Leibniz Institute for Solid State and Materials Research Dresden) via the use of chemical vapor deposition (CVD) and laser evaporation techniques.

HEALTH, SAFETY & TRANSPORTATION INFORMATION
Material Safety Data Sheet MSDS
Signal Word Warning
Hazard Statements H315-H319-H335-H361
Hazard Codes Xn
Risk Codes 36/37/38-63
Safety Precautions 26-36
RTECS Number N/A
Transport Information N/A
WGK Germany 3
Globally Harmonized System of
Classification and Labelling (GHS)
Exclamation Mark-Acute Toxicity Health Hazard      

YTTRIUM ACETYLACETONATE SYNONYMS
Y(acac)3 hydrate, Yttrium(III) acetylacetonate hydrate, Tris[(3Z)-4-(hydroxy-kappaO)-3-penten-2-onato]yttrium hydrate (1:1)

CUSTOMERS FOR YTTRIUM ACETYLACETONATE HAVE ALSO LOOKED AT
Yttrium Foil Yttrium Pellets Yttrium Sputtering Target Yttrium Oxide Pellets Yttrium Acetate
Yttrium Metal Yttrium Wire Yttrium Chloride Yttrium Aluminum Alloy Yttrium Nitrate
Yttrium Nanoparticles Yttrium Oxide Yttrium Nickel Alloy Yttrium Chloride Yttrium Acetylacetonate
Show Me MORE Forms of Yttrium

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis

Recent Research & Development for Yttrium

  • Introduction of an yttrium-manganese binary composite that has extremely high adsorption capacity for arsenate uptake in different water conditions. Yang Yu, Ling Yu, and J. Paul Chen. Ind. Eng. Chem. Res.: February 9, 2015
  • Rich Structural Chemistry in New Alkali Metal Yttrium Tellurites: Three-Dimensional Frameworks of NaYTe4O10, KY(TeO3)2, RbY(TeO3)2, and a Novel Variant of Hexagonal Tungsten Bronze, CsYTe3O8. Youngkwon Kim, Dong Woo Lee, and Kang Min Ok. Inorg. Chem.: December 17, 2014
  • Versatile Reactivity of Diketiminato-Supported Yttrium Dialkyl Complex toward Aromatic N-Heterocycles. Yin Zhang, Jie Zhang, Jianquan Hong, Fangjun Zhang, Linhong Weng, and Xigeng Zhou. Organometallics: December 2, 2014
  • Unprecedented 3,4-Isoprene and cis-1,4-Butadiene Copolymers with Controlled Sequence Distribution by Single Yttrium Cationic Species. Bo Liu, Xingbao Wang, Yupeng Pan, Fei Lin, Chunji Wu, Jingping Qu, Yi Luo, and Dongmei Cui. Macromolecules: December 1, 2014
  • Synthesis and Characterization of Amine-Bridged Bis(phenolate) Yttrium Guanidinates and Their Application in the Ring-Opening Polymerization of 1,4-Dioxan-2-one. Tinghua Zeng, Yaorong Wang, Qi Shen, Yingming Yao, Yunjie Luo, and Dongmei Cui. Organometallics: November 19, 2014
  • Versatile 2-Methoxyethylaminobis(phenolate)yttrium Catalysts: Catalytic Precision Polymerization of Polar Monomers via Rare Earth Metal-Mediated Group Transfer Polymerization. Peter T. Altenbuchner, Benedikt S. Soller, Stefan Kissling, Thomas Bachmann, Alexander Kronast, Sergei I. Vagin, and Bernhard Rieger. Macromolecules: November 10, 2014
  • Thermochromism in Yttrium Iron Garnet Compounds. Hélène Serier-Brault, Lucile Thibault, Magalie Legrain, Philippe Deniard, Xavier Rocquefelte, Philippe Leone, Jean-Luc Perillon, Stéphanie Le Bris, Jean Waku, and Stéphane Jobic. Inorg. Chem.: November 10, 2014
  • Solvothermal Synthesis and Luminescence Properties of Yttrium Aluminum Garnet Monodispersed Crystallites with Well-Developed Faces. Meng M. Xu, Zhi J. Zhang, Jun J. Zhu, Jing T. Zhao, and Xiang Y. Chen. J. Phys. Chem. C: October 31, 2014
  • Oxygen Vacancy Effect on Photoluminescence Properties of Self-Activated Yttrium Tungstate. Bangfu Ding, Haijiao Qian, Chao Han, Junying Zhang, Sten-Eric Lindquist, Bin Wei, and Zilong Tang. J. Phys. Chem. C: October 10, 2014
  • Structural and Spectroscopic Characterization of Nd3+-Doped YVO4 Yttrium Orthovanadate Nanocrystallites. Rafal J. Wiglusz, Lukasz Marciniak, Robert Pazik, and Wieslaw Strek. Crystal Growth & Design: October 3, 2014

Recent Research & Development for Acetylacetonates

  • An Oxygen-Chelate Complex, Palladium Bis-acetylacetonate, Induces Apoptosis in H460 Cells via Endoplasmic Reticulum Stress Pathway Rather than Interacting with DNA. Yi Wang, Jie Hu, Yuepiao Cai, Shanmei Xu, Bixia Weng, Kesong Peng, Xiaoyan Wei, Tao Wei, Huiping Zhou, Xiaokun Li, and Guang Liang. J. Med. Chem.: November 25, 2013
  • Binary Diffusion Coefficients of Platinum(II) Acetylacetonate in Supercritical Carbon Dioxide. Chang Yi Kong, Tomoya Siratori, Guosheng Wang, Takeshi Sako, and Toshitaka Funazukuri. J. Chem. Eng. Data: October 15, 2013
  • Cyclometalated 4-Styryl-2-phenylpyridine Platinum(II) Acetylacetonate Complexes as Second-Order NLO Building Blocks for SHG Active Polymeric Films. Alessia Colombo, Claudia Dragonetti, Daniele Marinotto, Stefania Righetto, Dominique Roberto, Silvia Tavazzi, Muriel Escadeillas, Véronique Guerchais, Hubert Le Bozec, Abdou Boucekkine, and Camille Latouche. Organometallics: July 11, 2013
  • Single-Molecule Magnetism in Three Related {CoIII2DyIII2}-Acetylacetonate Complexes with Multiple Relaxation Mechanisms. Stuart K. Langley, Nicholas F. Chilton, Boujemaa Moubaraki, and Keith S. Murray. Inorg. Chem.: May 29, 2013
  • Oxidatively Induced P–O Bond Formation through Reductive Coupling between Phosphido and Acetylacetonate, 8-Hydroxyquinolinate, and Picolinate Groups. Andersson Arias, Juan Forniés, Consuelo Fortuño, and Antonio Martín , Piero Mastrorilli, Stefano Todisco, Mario Latronico, and Vito Gallo. Inorg. Chem.: April 18, 2013
  • Binding Modes of Carboxylate- and Acetylacetonate-Linked Chromophores to Homodisperse Polyoxotitanate Nanoclusters. Jesse D. Sokolow, Elzbieta Trzop, Yang Chen, Jiji Tang, Laura J. Allen, Robert H. Crabtree, Jason B. Benedict, and Philip Coppens. J. Am. Chem. Soc.: June 19, 2012
  • Dinuclear Cu(II) Complexes of Isomeric Bis-(3-acetylacetonate)benzene Ligands: Synthesis, Structure, and Magnetic Properties. Marzio Rancan, Alessandro Dolmella, Roberta Seraglia, Simonetta Orlandi, Silvio Quici, Lorenzo Sorace, Dante Gatteschi, and Lidia Armelao. Inorg. Chem.: April 19, 2012
  • Bis(acetylacetonate) Tungsten(IV) Complexes Containing a Basic Diazoalkane or Oxo Ligand. Chetna Khosla, Andrew B. Jackson, Peter S. White, and Joseph L. Templeton. Organometallics: January 17, 2012
  • Visible-Light-Driven Copper Acetylacetonate Decomposition by BiVO4. Shin-ichi Naya, Masanori Tanaka, Keisuke Kimura, and Hiroaki Tada. Langmuir: July 7, 2011
  • Metal-Acetylacetonate Synthesis Experiments: Which Is Greener?. M. Gabriela T. C. Ribeiro and Adélio A. S. C. Machado. J. Chem. Educ.: April 11, 2011