Ytterbium Plate

High Purity Yb Plate
CAS 7440-64-4

Product Product Code Order or Specifications
(2N) 99% Ytterbium Plate YB-M-02-PL Contact American Elements
(2N5) 99.5% Ytterbium Plate YB-M-025-PL Contact American Elements
(3N) 99.9% Ytterbium Plate YB-M-03-PL Contact American Elements
(3N5) 99.95% Ytterbium Plate YB-M-03-PL Contact American Elements
(4N) 99.99% Ytterbium Plate YB-M-04-PL Contact American Elements
(5N) 99.999% Ytterbium Plate YB-M-05-PL Contact American Elements

Formula CAS No. PubChem SID PubChem CID MDL No. EC No Beilstein
Re. No.
Yb 7440-64-4 24870321 23992 MFCD00011286  231-173-2 N/A [Yb] InChI=1S/Yb NAWDYIZEMPQZHO-UHFFFAOYSA-N

PROPERTIES Mol. Wt. Appearance Density Tensile Strength Melting Point Boiling Point Thermal Conductivity Electrical Resistivity Eletronegativity Specific Heat Heat of Vaporization Heat of Fusion MSDS
173.04 Silvery 6570 kg/m³ 66 MPa 824 °C 1196 °C 0.349 W/cm/K @ 298.2 K  29.0 microhm-cm @ 25 °C 1.1 Paulings  0.0346 Cal/g/K @ 25 °C 38 K-Cal/gm atom at 1194 °C 2.20 Cal/gm mole  Safety Data Sheet

American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopeia/British Pharmacopeia) and follows applicable ASTM testing standards.See safety data and research below and pricing/lead time above. American Elements specializes in producing Ytterbium as plates in various thicknesses and sizes. Most plates are cast for use in coating and thin film Chemical Vapor Deposition (CVD) and Physical Vapor Deposition (PVD) processes including Thermal and Electron Beam (E-Beam) Evaporation, Low Temperature Organic Evaporation, Atomic Layer Deposition (ALD), Organometallic and Chemical Vapor Deposition (MOCVD) for specific applications such as fuel cells and solar energy. Thicknesses start at 0.25" for all metals. Materials are produced using crystallization, solid state and other ultra high purification processes such as sublimation. American Elements specializes in producing custom compositions for commercial and research applications and for new proprietary technologies. American Elements also casts any of the rare earth metals and most other advanced materials into rod, bar or plate form, as well as other machined shapes and through other processes such as nanoparticles (See also application discussion at Nanotechnology Information and at Quantum Dots) and in the form of solutions and organometallics. We also produce Ytterbium as rods, powder and plates. Other shapes are available by request.

Ytterbium Element SymbolYtterbium (atomic symbol: Yb, atomic number: 70) is a Block F, Group 3, Period 6 element with an atomic weight of 173.054. Ytterbium Bohr ModelThe number of electrons in each of Ytterbium's shells is [2, 8, 18, 32, 8, 2] and its electron configuration is [Xe]4f14 6s2. The Ytterbium atom has a radius of 176 pm and a Van der Waals radius of 242 pm. Ytterbium was discovered by Jean Charles Galissard de Marignac in 1878 and first isolated by Georges Urbain in 1907. Elemental YtterbiumIn its elemental form, ytterbium has a silvery-white color. Ytterbium is found in monazite sand as well as the ores euxenite and xenotime. Ytterbium is named after Ytterby, a village in Sweden. Ytterbium can be used as a source for gamma rays, for the doping of stainless steel, or other active metals. Its electrical resistivity rises under stress, making it very useful for stress gauges that measure the deformation of the ground in the even of an earthquake. For more information on Ytterbium, including properties, satefy data, research, and American Elements' catalog of Ytterbium products, visit the Ytterbium Information Center.

UN 3089 4.1/PG 2
Exclamation Mark-Acute Toxicity Flame-Flammables      

Ytterbium Oxide Pellets Ytterbium Bromide Ytterbium Nanoparticles Ytterbium Sputtering Target Ytterbium Foil
Ytterbium Chloride Ytterbium Acetylacetonate Ytterbium Powder Ytterbium Telluride Ytterbium Metal
Ytterbium Pellets Ytterbium Fluoride Ytterbium Oxide Ytterbium Acetate Ytterbium Nitrate
Show Me MORE Forms of Ytterbium

Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.

Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis

German   Korean   French   Japanese   Spanish   Chinese (Simplified)   Portuguese   Russian   Chinese (Taiwan)  Italian   Turkish   Polish   Dutch   Czech   Swedish   Hungarian   Danish   Hebrew

Production Catalog Available in 36 Countries & Languages

Recent Research & Development for Ytterbium

  • Anthony B. Parmentier, Jonas J. Joos, Philippe F. Smet, Dirk Poelman, Corrigendum to “Luminescence of ytterbium in CaS and SrS” [J. Lumin. 154 (2014) 445–451], Journal of Luminescence, Volume 155, November 2014
  • Anthony B. Parmentier, Jonas J. Joos, Philippe F. Smet, Dirk Poelman, Luminescence of ytterbium in CaS and SrS, Journal of Luminescence, Volume 154, October 2014
  • F. Tárkányi, F. Ditrói, S. Takács, A. Hermanne, A.V. Ignatyuk, New data on activation cross section for deuteron induced reactions on ytterbium up to 50 MeV, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Volume 336, 1 October 2014
  • Mayeen Uddin Khandaker, Hiromitsu Haba, Naohiko Otuka, Ahmed Rufa’i Usman, Investigation of (d,x) nuclear reactions on natural ytterbium up to 24 MeV, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Volume 335, 15 September 2014
  • Li Fu, Haiping Xia, Yanming Dong, Shanshan Li, Xuemei Gu, Jianli Zhang, Dongjie Wang, Haochuan Jiang, Baojiu Chen, Upconversion luminescence from terbium and ytterbium codoped LiYF4 single crystals, Journal of Alloys and Compounds, Available online 12 August 2014
  • Guoyao Li, Lu Wang, Zhigang Yao, Fan Xu, Chiral ytterbium silylamide catalyzed enantioselective phospha-Michael addition of diethyl phosphite to chalcones, Tetrahedron: Asymmetry, Volume 25, Issues 13–14, 31 July 2014
  • Kutloano E. Sekhosana, Tebello Nyokong, Synthesis of ytterbium bisphthalocyanines: Photophysicochemical properties and nonlinear absorption behavior, Optical Materials, Available online 14 June 2014
  • Shuai CHEN, Zhengtang LIU, Liping FENG, Xingsen CHE, Xiaoru ZHAO, Effect of ytterbium inclusion in hafnium oxide on the structural and electrical properties of the high-k gate dielectric, Journal of Rare Earths, Volume 32, Issue 6, June 2014
  • N.Q. Tuan, A.M.P. Pinto, H. Puga, L.A. Rocha, J. Barbosa, Effects of substituting ytterbium for scandium on the microstructure and age-hardening behaviour of Al–Sc alloy, Materials Science and Engineering: A, Volume 601, 17 April 2014
  • Zhaohe Gao, Hongying Li, Jiaojiao Liu, Xiaochao Lu, Yangxun Ou, Effects of Ytterbium and Zirconium on precipitation evolution and coarsening resistance in aluminum during isothermal aging, Journal of Alloys and Compounds, Volume 592, 15 April 2014
  • Pingxue Li, Ziqiang Zhao, Junjie Chi, Chun Yang, Guangju Zhang, Haowei Hu, Yifei Yao, Yao Li, Xiongfei Wang, Guoshun Zhong, Hong Zhao, Dongsheng Jiang, Tunable picosecond SESAM mode-locking ytterbium-doped double-clad LMA PCF oscillator, Optics Communications, Volume 317, 15 April 2014
  • Sebastian C. Peter, Udumula Subbarao, Sumanta Sarkar, G. Vaitheeswaran, Axel Svane, Mercouri G. Kanatzidis, Crystal structure of Yb2CuGe6 and Yb3Cu4Ge4 and the valency of ytterbium, Journal of Alloys and Compounds, Volume 589, 15 March 2014
  • M. Ivanov, Yu. Kopylov, V. Kravchenko, Jiang LI, A. Medvedev, Yubai PAN, Highly transparent ytterbium doped yttrium lanthanum oxide ceramics, Journal of Rare Earths, Volume 32, Issue 3, March 2014
  • P. Kumar, V.K. Saini, G.S. Purbia, O. Prakash, S.K. Dixit, S.V. Nakhe, Studies on inverse optogalvanic and Penning ionization effects in ytterbium and neon transitions in Yb-Ne hollow cathode lamp, Optics Communications, Volume 313, 15 February 2014
  • Weizuo Li, Jingya Li, Hongfeng Li, Pengfei Yan, Guangfeng Hou, Guangming Li, NIR luminescence of 2-(2,2,2-trifluoroethyl)-1-indone (TFI) neodymium and ytterbium complexes, Journal of Luminescence, Volume 146, February 2014
  • Junqing Zhao, Yonggang Wang, Peiguang Yan, Shuangchen Ruan, Yuen Tsang, Gelin Zhang, Huiquan Li, An Ytterbium-doped fiber laser with dark and Q-switched pulse generation using graphene-oxide as saturable absorber, Optics Communications, Volume 312, 1 February 2014
  • A. Béjaoui, K. Horchani-Naifer, S. Hraiech, M. Férid, Optical properties of lutetium diphosphates powders doped by ytterbium, Optical Materials, Volume 36, Issue 2, December 2013
  • Sergey P. Babailov, Eugeny N. Zapolotsky, Eduard S. Fomin, Molecular structure and paramagnetic properties of bis-diisobutyl-dithiophosphinate complexes of neodymium(III), europium(III) and ytterbium(III) with 1,10-phenanthroline using NMR, Polyhedron, Volume 65, 28 November 2013
  • Mohamad Hassan Amin, James Tardio, Suresh K. Bhargava, An investigation on the role of ytterbium in ytterbium promoted ?-alumina-supported nickel catalysts for dry reforming of methane, International Journal of Hydrogen Energy, Volume 38, Issue 33, 4 November 2013
  • Monika Michálková, Zoltán Lencéš, Martin Michálek, Peter Kocher, Jakob Kuebler, Pavol Šajgalík, Improvement of electrical conductivity of silicon nitride/carbon nano-fibers composite using magnesium silicon nitride and ytterbium oxide as sintering additives, Journal of the European Ceramic Society, Volume 33, Issues 13–14, November 2013