Yttrium Prisms

High Purity Y Prisms
CAS 7440-65-5


Product Product Code Order or Specifications
(2N) 99% Yttrium Prisms Y-M-02-PR Contact American Elements
(2N5) 99.5% Yttrium Prisms Y-M-025-PR Contact American Elements
(3N) 99.9% Yttrium Prisms Y-M-03-PR Contact American Elements
(3N5) 99.95% Yttrium Prisms Y-M-035-PR Contact American Elements
(4N) 99.99% Yttrium Prisms Y-M-04-PR Contact American Elements
(5N) 99.999% Yttrium Prisms Y-M-05-PR Contact American Elements

CHEMICAL
IDENTIFIER
Formula CAS No. PubChem SID PubChem CID MDL No. EC No Beilstein
Re. No.
SMILES
Identifier
InChI
Identifier
InChI
Key
Y 7440-65-5 24855941 23993 MFCD00011468  231-174-8 N/A [Y] InChI=1S/Y VWQVUPCCIRVNHF-UHFFFAOYSA-N

PROPERTIES Mol. Wt. Appearance Density Tensile Strength Melting Point Boiling Point Thermal Conductivity Electrical Resistivity Eletronegativity Specific Heat Heat of Vaporization Heat of Fusion MSDS
88.91 Silvery 4472 kg/m³ 67 MPa 1526 °C 3336 °C 0.172 W/cm/K @ 298.2 K  57.0 microhm-cm @ °C 1.3 Paulings  0.068 Cal/g/K @ 25 °C 93 K-Cal/gm atom at 3338 °C 4.10 Cal/gm mole  Safety Data Sheet

See research below. American Elements specializes in producing Yttrium as flat irregularly shaped pieces of material in a varying range of sizes. Most flakes/prisms are produced from cast Ingots for use in coating and thin film Chemical Vapor Deposition (CVD) and Physical Vapor Deposition (PVD) processes including Thermal and Electron Beam (E-Beam) Evaporation, Low Temperature Organic Evaporation, Atomic Layer Deposition (ALD), Organometallic and Chemical Vapor Deposition (MOCVD) for specific applications such as fuel cells and solar energy. Thickness can range from 0.003" to approximately 2mm for all metals. Some metals can also be rolled down as thin as 0.001” for use as an evaporation source in microelectronics, optics, magnetics, MEMS, and hard resistant coatings. Piece sizes are available up to approximately 7" maximum width. Maximum lengths of about 20" can be obtained with a nominal thickness between about 0.005" and 0.020" for thin film deposition on glass or metal substrates. Materials are produced using crystallization, solid state and other ultra high purification processes such as sublimation. American Elements specializes in producing custom compositions for commercial and research applications and for new proprietary technologies. American Elements also casts any of the rare earth metals and most other advanced materials into rod, bar or plate form, as well as other machined shapes and through other processes such as nanoparticles (See also application discussion at Nanotechnology Information and at Quantum Dots) and in the form of solutions and organometallics. We also produce Yttrium as rods, powder and plates. Other shapes are available by request.

Yttrium Bohr ModelYttrium (Y) atomic and molecular weight, atomic number and elemental symbolYttrium (atomic symbol: Y, atomic number: 39) is a Block D, Group 3, Period 5 element with an atomic weight of 88.90585. The number of electrons in each of yttrium's shells is [2, 8, 18, 9, 2] and its electron configuration is [Kr] 4d1 5s2. The yttrium atom has a radius of 180 pm and a Van der Waals radius of 219 pm. Yttrium was discovered by Johann Gadolin in 1794 and first isolated by Carl Gustav Mosander in 1840. Elemental Yttrium In its elemental form, Yttrium has a silvery white metallic appearance. Yttrium has the highest thermodynamic affinity for oxygen of any element. Yttrium is not found in nature as a free element and is almost always found combined with the lanthanides in rare earth minerals. While not part of the rare earth series, it resembles the heavy rare earths which are sometimes referred to as the "yttrics" for this reason. Another unique characteristic derives from its ability to form crystals with useful properties. The name yttrium originated from a Swedish village near Vaxholm called Yttbery where it was discovered. For more information on yttrium, including properties, safety data, research, and American Elements' catalog of yttrium products, visit the Yttrium Information Center.

HEALTH, SAFETY & TRANSPORTATION INFORMATION
N/A
N/A
N/A
N/A
N/A
ZG2980000
N/A
3
N/A        

CUSTOMERS FOR YTTRIUM PRISMS HAVE ALSO LOOKED AT
Yttrium Foil Yttrium Pellets Yttrium Sputtering Target Yttrium Oxide Pellets Yttrium Acetate
Yttrium Metal Yttrium Wire Yttrium Chloride Yttrium Aluminum Alloy Yttrium Nitrate
Yttrium Nanoparticles Yttrium Oxide Yttrium Nickel Alloy Yttrium Chloride Yttrium Acetylacetonate
Show Me MORE Forms of Yttrium

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis





German   Korean   French   Japanese   Spanish   Chinese (Simplified)   Portuguese   Russian   Chinese (Taiwan)  Italian   Turkish   Polish   Dutch   Czech   Swedish   Hungarian   Danish   Hebrew

Production Catalog Available in 36 Countries & Languages


Recent Research & Development for Yttrium

  • J.R. Jayaramaiah, B.N. Lakshminarasappa, K.R. Nagabhushana, Luminescence performance of europium-doped yttrium oxide thin films, Journal of Luminescence, Volume 157, January 2015
  • Insu Cho, Jun-Gill Kang, Youngku Sohn, Photoluminescence profile imaging of Eu(III), Tb(III) and Eu(III)/Tb(III)-doped yttrium oxide nanosheets and nanorods, Journal of Luminescence, Volume 157, January 2015
  • Fan Yang, Yanfei Wang, Xiaofeng Zhao, Ping Xiao, Enhanced ionic conductivity in pyrochlore and fluorite mixed phase yttrium-doped lanthanum zirconate, Journal of Power Sources, Volume 273, 1 January 2015
  • Koppala Siva Kumar, Chan-Geun Song, Geon Myeon Bak, Gaeun Heo, Maeng-Je Seong, Jong-Won Yoon, Phase control of yttrium (Y)-doped TiO2 nanofibers and intensive visible photoluminescence, Journal of Alloys and Compounds, Volume 617, 25 December 2014
  • F.G. Coury, W.J. Botta, C. Bolfarini, C.S. Kiminami, M.J. Kaufman, The role of yttrium and oxygen on the crystallization behavior of a Cu–Zr–Al metallic glass, Journal of Non-Crystalline Solids, Volume 406, 15 December 2014
  • N. Tahreen, D.F. Zhang, F.S. Pan, X.Q. Jiang, C. Li, D.Y. Li, D.L. Chen, Influence of yttrium content on phase formation and strain hardening behavior of Mg–Zn–Mn magnesium alloy, Journal of Alloys and Compounds, Volume 615, 5 December 2014
  • C.W. He, M.F. Barthe, P. Desgardin, S. Akhmadaliev, M. Behar, F. Jomard, Positron studies of interaction between yttrium atoms and vacancies in bcc iron with relevance for ODS nanoparticles formation, Journal of Nuclear Materials, Volume 455, Issues 1–3, December 2014
  • M.A. Auger, V. de Castro, T. Leguey, J. Tarcísio-Costa, M.A. Monge, A. Muñoz, R. Pareja, Effect of yttrium addition on the microstructure and mechanical properties of ODS RAF steels, Journal of Nuclear Materials, Volume 455, Issues 1–3, December 2014
  • Min-Jia Wang, Hui Yang, Qi-Long Zhang, Zhi-Sheng Lin, Zi-Shan Zhang, Dan Yu, Liang Hu, Microstructure and dielectric properties of BaTiO3 ceramic doped with yttrium, magnesium, gallium and silicon for AC capacitor application, Materials Research Bulletin, Volume 60, December 2014
  • Chengfeng Li, Xiaolu Ge, Guochang Li, Hao Lu, Rui Ding, In situ hydrothermal crystallization of hexagonal hydroxyapatite tubes from yttrium ion-doped hydroxyapatite by the Kirkendall effect, Materials Science and Engineering: C, Volume 45, 1 December 2014