Yttrium Elemental Symbol

French German Italian Portuguese Spanish Swedish
Yttrium Yttrium Ittrio Itrio Ytrio Yttrium

Yttrium (Y) atomic and molecular weight, atomic number and elemental symbolYttrium is a Block D, Group 3, Period 5 element. The number of electrons in each of yttrium's shells is 2, 8, 18, 9, 2 and its electron configuration is [Kr] 4d1 5s2. The yttrium atom has a radius of and its Van der Waals radius is Yttrium Bohr ModelIn its elemental form, CAS 7440-65-5, Yttrium has a silvery white appearance. Yttrium has the highest thermo-dynamic affinity for oxygen of any element. Elemental Yttrium This characteristic is the basis for many of its applications. Yttrium is not found in nature as a free element and is almost always found combined with the lanthanides in rare earth minerals. While not part of the rare earth series, it resembles the heavy rare earths which are sometimes referred to as the "yttrics" for this reason. Another unique characteristic derives from its ability to form crystals with useful properties. Yttrium was first discovered by Johann Gadolin in 1794. The name yttrium originated from a Swedish village near Vaxholm called Yttbery where it was discovered.

Yttrium's most important use is in making phosphors which are used in CRT displays and in LEDs. Yttrium is also used in the production of superconductors, electrodes, electrolytes, electronic filters, and lasers. Yttria stabilized zirconium oxide is used in high temperature applications, such as in thermal plasma sprays to protect aerospace high temperature surfaces. High Purity (99.999%) Yttrium Oxide (Y2O3) PowderCrystals of the yttrium-iron-garnet (YIG) variety are essential to microwave communication equipment and yttrium-aluminum-garnet (YAG) crystals are utilized along with neodymium in a number of laser applications. High Purity (99.999%) Yttrium (Y) Sputtering TargetYttrium is available as metal and compounds with purities from 99% to 99.999% (ACS grade to ultra-high purity). Elemental or metallic forms include pellets, rod, wire and granules for evaporation source material purposes. Yttrium nanoparticles and nanopowders provide ultra-high surface area which nanotechnology research and recent experiments demonstrate function to create new and unique properties and benefits. Oxides are available in powder and dense pellet form for such uses as optical coating and thin film applications. Oxides tend to be insoluble. Fluorides are another insoluble form for uses in which oxygen is undesirable such as metallurgy, chemical and physical vapor deposition and in some optical coatings. Yttrium is also available in soluble forms including chlorides, nitrates and acetates. These compounds can be manufactured as solutions at specified stoichiometries.

Insoluble compounds of Yttrium are non-toxic, although water soluble compounds are somewhat toxic. Safety data for Yttrium and its compounds can vary widely depending on the form. For potential hazard information, toxicity, and road, sea and air transportation limitations, such as DOT Hazard Class, DOT Number, EU Number, NFPA Health rating and RTECS Class, please see the specific material or compound referenced in the Products tab below.

  • Properties
  • Safety Data
  • Products
  • Research
  • Isotopes
  • Other Elements

Yttrium Properties

Symbol: Y Melting Point: 1799 K, 1526 °C, 2779 °F
Atomic Number: 39 Boiling Point: 3609 K, 3336 °C, 6037 °F
Atomic Weight: 88.90585 Density: 4.472 g·cm−3
Element Category: transition metal Liquid Density @ Melting Point: 4.24 g·cm−3
Group, Period, Block: 3, 5, d Specific Heat: 0.068 Cal/g/K @ 25 °C
    Heat of Vaporization 365 kJ·mol−1
CHEMICAL STRUCTURE Heat of Fusion 11.42 kJ·mol−1
Electrons: 39 Thermal Conductivity: 17.2 W·m−1·K−1
Protons: 39 Thermal Expansion: (r.t.) (α, poly) 10.6 µm/(m·K)
Neutrons: 50 Electrical Resistivity: (r.t.) (α, poly) 596 nΩ·m
Electron Configuration: [Kr] 4d15s2 Electronegativity: 1.3 Paulings
Atomic Radius: 180 pm Tensile Strength: 67 MPa
Covalent Radius: 190±7 pm Molar Heat Capacity: 26.53 J·mol−1·K−1
Van der Waals radius: 200 pm Young's Modulus: 63.5 GPa
Oxidation States: 3, 2, 1 (weakly basic oxide) Shear Modulus: 25.6 GPa
Phase: Solid Bulk Modulus: 41.2 GPa
Crystal Structure: hexagonal close-packed Poisson Ratio: 0.243
Magnetic Ordering: paramagnetic Mohs Hardness: N/A
1st Ionization Energy: 599.86 kJ mol-1 Vickers Hardness: N/A
2nd Ionization Energy: 1180.99 kJ mol-1 Brinell Hardness: 589 MPa
3rd Ionization Energy: 1979.89 kJ mol-1 Speed of Sound: (20 °C) 3300 m·s−1
CAS Number: 7440-65-5 Abundance in typical human body, by weight: N/A
ChemSpider ID: 22429 Abundance in typical human body, by atom: N/A
PubChem CID: 23993 Abundance in universe, by weight: 7 ppb
MDL Number: MFCD00011468 Abundance in universe, by atom: 0.1 ppb
EC Number: 231-174-8 Discovered By: Johan Gadolin
Beilstein Number: N/A Discovery Date: 1794
SMILES Identifier: [Y]  
InChI Identifier: InChI=1S/Y Other Names: Ittrio, Itrio

Yttrium Products

Metal Forms  •  Compounds  •  Alloys  •  Oxide Forms  •  Organometallic Compounds
Sputtering Targets  •  Nanomaterials  •  Semiconductor Materials


Barium Yttrium Tungsten Oxide
Cerium Oxide Stabilized with Yttrium Oxide
Lanthanum Strontium Manganite - Yttrium Stabilized Zirconia (LSM-YSZ)
Lanthanum Ytttrium Germanate
Molybdenum Yttrium Ribbon
Nickel Oxide - YSZ Anode Paste
Nickel Oxide - YSZ Anode Tape
Sodium Yttrium Fluoride, Ytterbium And Erbium Doped
Sodium Yttrium Fluoride, Ytterbium And Thulium Doped
Sodium Yttrium Oxyfluoride, Ytterbium And Erbium Doped
YSZ Granule
YSZ Lump
Yttria Stabilized Bismuth Oxide (YBO)
Yttria Stabilized Zirconia (12 Mol. %)
Yttria Stabilized Zirconia (8 Mol %)
Yttria Stabilized Zirconia (6 Mol. %)
Yttria Stabilized Zirconia (5 Mol. %)
Yttria Stabilized Zirconia Grinding Beads
Yttria Stabilized Zirconia Paste
Yttria Stabilized Zirconia Sheet
Yttria Stabilized Zirconia Spheres
Yttria Stabilized Zirconia Tape
Yttria Stabilized Zirconia Tube
Yttrium Acetate Hydrate
Yttrium Acetate Solution
Yttrium Acetate Tetrahydrate
Yttrium Aluminide
Yttrium Aluminum Borate
Yttrium Barium Copper Oxide
Yttrium Borate
Yttrium Boride
Yttrium Bromide
Yttrium Bromide, Ultra Dry
Yttrium Carbide
Yttrium Carbonate
Yttrium Chloride
Yttrium Chloride Powder
Yttrium Chloride Beads
Yttrium Chloride Solution
Yttrium-doped Barium Cerate
Yttrium Ferrite
Yttrium Fluoride
Yttrium Fluoride Granules
Yttrium Fluoride Pieces
Yttrium Hydride YH2
Yttrium Hydride YH3
Yttrium Iodide
Yttrium Iodide, Ultra Dry
Yttrium Lithium Fluoride
Yttrium Nitrate Hexahydrate
Yttrium Nitrate Solution
Yttrium(III) Nitrate Tetrahydrate
Yttrium Nitride
Yttrium Oxide
Yttrium Perchlorate Solution
Yttrium Phosphate
Yttrium Silicide
Yttrium Sulfate
Yttrium Sulfate Solution
Yttrium Trifluoroacetate Hydrate
Yttrium Vanadate
Yttrium Zirconium Oxide
Zirconium(IV) Oxide, Yttria stabilized Pellets
Zirconium(IV) Oxide, Yttria stabilized Submicron Powder
Zirconium(IV) Oxide, Yttria Stabilized
Zirconium Oxide-Yttrium Oxide

Oxide Forms

Yttrium Aluminum Oxide Particles
Yttrium Aluminum Oxide Pellets
Yttrium Aluminum Oxide Pieces
Yttrium Aluminum Oxide Powder
Yttrium Aluminum Oxide Shot
Yttrium Aluminum Oxide Tablets
Yttrium Oxide Nanopowder
Yttrium Oxide Particles
Yttrium Oxide Pellets
Yttrium Oxide Pieces
Yttrium Oxide Powder
Yttrium Oxide Rotatable Sputtering Target
Yttrium Oxide Sheet
Yttrium Oxide Shot
Yttrium Oxide Sputtering Target
Yttrium Oxide Tablets
Crystal/Semiconductor Materials

Chromium, Erbium: Yttrium Scandium Gallium Garnet
(Green) Glued Crystals
Holmium-doped Yttrium Lithium Fluoride
LYSO Scintillation Crystal
Neodymium-doped Yttrium Lithium Fluoride
Neodymium-doped Yttrium Orthovanadate
Thulium-doped Yttrium Lithium Fluoride
YLaSc Crystal, Nonlinear
Ytterbium doped Potassium Yttrium Tungstate
Yttria Doped Ceria
Yttrium Aluminum Garnet (YAG)
Yttrium Aluminum Garnet, Ce-doped (Ce:YAG)
Yttrium Aluminum Garnet, Cr-doped (Cr4+:YAG)
Yttrium Aluminum Garnet, Cr-Tm-Ho-doped (CTH:YAG - Cr, Tm, Ho:YAG)
Yttrium Aluminum Garnet, Nd-doped (Nd:YAG)
Yttrium Aluminum Garnet, Tm-doped (Tm:YAG)
Yttrium Aluminum Garnet, V-doped (V3+:YAG)
Yttrium Aluminum Garnet, Yb-doped (Yb:YAG)
Yttrium Aluminum Oxide
Yttrium Aluminum Perovskite, Ce-doped (Ce:YAP)
Yttrium Aluminum Perovskite, Er-doped (Er:YAP)
Yttrium Aluminum Perovskite, Tm-doped (Tm:YAP)
Yttrium Antimonide
Yttrium Arsenide
Yttrium Iron Garnet (YIG)
Yttrium Oxide, Europium Doped
Yttrium Phosphide
Yttrium Selenide
Yttrium Sulfide
Yttrium Telluride


Cerium Oxide, Yttria doped Nanopowder
Yttria Stabilized Zirconia Nanoparticles
Yttrium Aluminate Nanopowder
Yttrium Aluminum Oxide Nanoparticles
Yttrium Europium Oxide Nanoparticles
Yttrium Iron Oxide Nanopowder
Yttrium Nanofoil
Yttrium Nanoparticles
Yttrium Nanoprisms
Yttrium Nanorods
Yttrium Oxide Nanopowder
Zirconium(IV) Oxide, Yttria stabilized Nanopowder

Sputtering Targets

Aluminum Yttrium Sputtering Target
Barium Cerium Yttrium Zirconate Sputtering Target
Magnesium Neodymium Zirconium Yttrium Sputtering Target
Magnesium Yttrium Sputtering Target
Titanium Aluminum Yttrium Sputtering Target
Yttria Doped Ceria Sputtering Target
Yttrium Aluminum Oxide Sputtering Target
Yttrium Barium Cuprate Sputtering Target
Yttrium Fluoride Sputtering Target
Yttrium Oxide Rotatable Sputtering Target
Yttrium Oxide Sputtering Target
Yttrium Phosphide Sputtering Target
Yttrium Rotatable Sputtering Target
Yttrium Selenide Sputtering Target
Yttrium Sputtering Target
Yttria Stabilized Zirconia Sputtering Target
Yttrium Telluride Sputtering Target
Yttrium Titanium Sputtering Target
Yttrium Zirconium Magnesium Sputtering Target
Yttrium Zirconium Sputtering Target
Zirconium Yttrium Sputtering Target

Organometallic Compounds

Yttrium(III) 2-Ethylhexanoate
Yttrium 2-Ethylhexanoate Solution
Yttrium(III) 2-Methoxyethoxide Solution
Yttrium Acetylacetonate
Yttrium(III) Butoxide Solution
Yttrium(III) Hexafluoroacetylacetonate Dihydrate
Yttrium Isopropoxide Oxide
Yttrium(III) Isopropoxide Solution
Yttrium Trifluoromethanesulfonate
Yttrium Tris(2,2,6,6-tetramethyl-3,5-heptanedionate)
Yttrium(III) Tris(isopropoxide)

Recent Research & Development for Yttrium

  • Qizhen Duan, Qiuhong Yang, Shenzhou Lu, Cen Jiang, Qing Lu, Bo Lu, Fabrication and properties of Er/Tm/Pr tri-doped yttrium lanthanum oxide transparent ceramics, Journal of Alloys and Compounds, Volume 612, 5 November 2014
  • N. Stanford, R. Cottam, B. Davis, J. Robson, Evaluating the effect of yttrium as a solute strengthener in magnesium using in situ neutron diffraction, Acta Materialia, Volume 78, 1 October 2014
  • Dongzhou Ding, Bo Liu, Yuntao Wu, Jianhua Yang, Guohao Ren, Junfeng Chen, Effect of yttrium on electron–phonon coupling strength of 5d state of Ce3+ ion in LYSO:Ce crystals, Journal of Luminescence, Volume 154, October 2014
  • Xiao-feng Zhang, Ke-song Zhou, Xu Wei, Bo-yu Chen, Jin-bing Song, Min Liu, In situ synthesis of a-alumina layer at top yttrium-stabilized zirconia thermal barrier coatings for oxygen barrier, Ceramics International, Volume 40, Issue 8, Part B, September 2014
  • Satyam M. Shinde, Sanjay D. Gupta, Sanjeev K. Gupta, Prafulla K. Jha, Lattice dynamics and thermodynamical study of yttrium monochalcogenides, Computational Materials Science, Volume 92, September 2014
  • Yanxing Zhang, Zhaoming Fu, Mingyang Wang, Zongxian Yang, Oxygen vacancy induced carbon deposition at the triple phase boundary of the nickel/yttrium-stabilized zirconia (YSZ) interface, Journal of Power Sources, Volume 261, 1 September 2014
  • X.L. Li, S.M. He, X.T. Zhou, Y. Zou, Z.J. Li, A.G. Li, X.H. Yu, Effects of rare earth yttrium on microstructure and properties of Ni–16Mo–7Cr–4Fe nickel-based superalloy, Materials Characterization, Volume 95, September 2014
  • C. Karunakaran, S. Kalaivani, P. Vinayagamoorthy, Sasmita Dash, Optical, electrical and visible light-photocatalytic properties of yttrium-substituted BiVO4 nanoparticles, Materials Science and Engineering: B, Volume 187, September 2014
  • Trygve Mongstad, Annett Thøgersen, Aryasomayajula Subrahmanyam, Smagul Karazhanov, The electronic state of thin films of yttrium, yttrium hydrides and yttrium oxide, Solar Energy Materials and Solar Cells, Volume 128, September 2014
  • Aleksandr Pishtshev, Smagul Zh. Karazhanov, Role of oxygen in materials properties of yttrium trihydride, Solid State Communications, Volume 194, September 2014
  • Christos Argirusis, Georgios Antonaropoulos, Georgia Sourkouni, Francois Jomard, ?xygen tracer diffusion in single crystalline yttrium silicate, Solid State Ionics, Volume 262, 1 September 2014
  • Yuzheng Wang, He Yang, Xiangxin Xue, Synergistic antibacterial activity of TiO2 co-doped with zinc and yttrium, Vacuum, Volume 107, September 2014
  • Zhiqi Zhang, Zhiqiang Wang, Ruiying Miao, Qiong Zhu, Dehong Chen, Xiaowei Zhang, Lin Zhou, Zongan Li, Shihong Yan, Purification of yttrium to 4N5+ purity, Vacuum, Volume 107, September 2014
  • H. Zheng, H.B. Qin, P. Zheng, J.X. Deng, L. Zheng, M.G. Han, Preparation of low ferromagnetic resonance linewidth yttrium iron garnet films on silicon substrate, Applied Surface Science, Volume 307, 15 July 2014
  • Pinit Kidkhunthod, Santi Phumying, Santi Maensiri, X-ray absorption spectroscopy study on yttrium iron garnet (Y3Fe5O12) nanocrystalline powders synthesized using egg white-based sol–gel route, Microelectronic Engineering, Available online 11 July 2014
  • Toshiki Miyazaki, Toru Tanaka, Yuki Shirosaki, Masakazu Kawashita, Yttrium phosphate microspheres with enriched phosphorus content prepared for radiotherapy of deep-seated Cancer, Ceramics International, Available online 9 July 2014
  • S.S. Chopade, C. Nayak, D. Bhattacharyya, S.N. Jha, R.B. Tokas, N.K. Sahoo, D.S. Patil, EXAFS Study on Yttrium oxide thin films deposited by RF plasma enhanced MOCVD under the influence of varying RF self -bias, Applied Surface Science, Available online 8 July 2014
  • N. Tahreen, D.F. Zhang, F.S. Pan, X.Q. Jiang, C. Li, D.Y. Li, D.L. Chen, Influence of yttrium content on phase formation and strain hardening behavior of Mg-Zn-Mn magnesium alloy, Journal of Alloys and Compounds, Available online 7 July 2014
  • Yu Liu, Ran Ran, Sidian Li, Yong Jiao, Moses O. Tade, Zongping Shao, Significant performance enhancement of yttrium-doped barium cerate proton conductor as electrolyte for solid oxide fuel cells through a Pd ingress–egress approach, Journal of Power Sources, Volume 257, 1 July 2014
  • Huarong Zhang, Guashuai Miao, Xingping Ma, Bei Wang, Haiwu Zheng, Enhancing the photocatalytic activity of nanocrystalline TiO2 by co-doping with fluorine and yttrium, Materials Research Bulletin, Volume 55, July 2014

Yttrium Isotopes

Yttrium has one stable isotope: 89Y

Nuclide Symbol Isotopic Mass Half-Life Nuclear Spin
89Y 88.9058483 Stable 1/2-