Zirconium Boats

High Purity Zr Boats
CAS 7440-67-7


Product Product Code Order or Specifications
(2N) 99% Zirconium Boats ZR-M-02-BOAT Contact American Elements
(3N) 99.9% Zirconium Boats ZR-M-03-BOAT Contact American Elements
(3N5) 99.95% Zirconium Boats ZR-M-35-BOAT Contact American Elements

CHEMICAL
IDENTIFIER
Formula CAS No. PubChem CID MDL No. EC No Beilstein
Re. No.
SMILES
Identifier
InChI
Identifier
InChI
Key
Zr 7440-67-7 23995 MFCD00011303  N/A N/A [Zr] InChI=1S/Zr QCWXUUIWCKQGHC-UHFFFAOYSA-N

PROPERTIES Mol. Wt. Appearance Density Tensile Strength Melting Point Boiling Point Thermal Conductivity Electrical Resistivity Eletronegativity Specific Heat Heat of Vaporization Heat of Fusion MSDS
91.22 White 6506 kg/m³ 230 MPa 1852 °C 3580 °C 0.227 W/cm/K @ 298.2 K  40.0 microhm-cm @ 20 oC °C 1.4 Paulings  0.0671 Cal/g/K @ 25 oC °C 120 K-Cal/gm atom at 4377 °C 5.50 Cal/gm mole  Safety Data Sheet

High Purity Zirconium BoatsAmerican Elements specializes in supplying Zirconium Boats with a variety of dimensions including round, in numerous standard diameters and wall thicknesses. Custom configurations are available. Materials include most metals including most transition, refractory and precious metals and other advanced materials. Boats can also be produced from custom materials and alloys for commercial and research applications and for new proprietary technologies. Other available shapes include tubes, bar or plate form, as well as custom machined shapes and through other processes such as nanoparticles (See also application discussion at Nanotechnology Information and at Quantum Dots ) and in the form of solutions and organometallics . See research below. We also produce Zirconium as rod, pellets, powder, pieces, granules, ingot, wire, and in compound forms, such as oxide. Other shapes are available by request.

Zirconium (Zr) atomic and molecular weight, atomic number and elemental symbol Zirconium (atomic symbol: Zr, atomic number: 40) is a Block D, Group 4, Period 5 element with an atomic weight of 91.224. Zirconium Bohr ModelThe number of electrons in each of Zirconium's shells is 2, 8, 18, 10, 2 and its electron configuration is [Kr] 4d2 5s2. The zirconium atom has a radius of 160 pm and a Van der Waals radius of 186 pm. Zirconium was discovered by Martin Heinrich Klaproth in 1789 and first isolated by Jöns Jakob Berzelius in 1824. Elemental ZirconiumIn its elemental form, zirconium has a silvery white appearance that is similar to titanium. Zirconium's principal mineral is zircon (zirconium silicate). Zirconium is commercially produced as a by-product of titanium and tin mining and has many applications as a opacifier and a refractory material. It is not found in nature as a free element. The name of zirconium comes from the mineral zircon, the most important source of zirconium, and from the Persian word 'zargun' meaning gold-like. For more information on zirconium, including properties, safety data, research, and American Elements' catalog of zirconium products, visit the Zirconium Information Center.

HEALTH, SAFETY & TRANSPORTATION INFORMATION
Danger
H250-H251-H260 
F
15-17
43-7/8
ZH7070000
UN 1358 4.1/PG 2
nwg
Flame-Flammables        

CUSTOMERS FOR ZIRCONIUM BOATS HAVE ALSO LOOKED AT
Aluminum Zirconium Alloy Zirconium Wire Zirconium Powder Zirconium Oxide Zirconium Pellets
Zirconium Acetate Zirconium Foil Zirconium Oxide Pellets Zirconium Metal Zirconium Acetylacetonate
Zirconium Nitrate Solution Zirconium Nanoparticles Zirconium Scandium Iron Alloy Zirconium Sputtering Target Zirconium Chloride
Show Me MORE Forms of Zirconium

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis





German   Korean   French   Japanese   Spanish   Chinese (Simplified)   Portuguese   Russian   Chinese (Taiwan)  Italian   Turkish   Polish   Dutch   Czech   Swedish   Hungarian   Danish   Hebrew

Production Catalog Available in 36 Countries & Languages


Recent Research & Development for Zirconium

  • Chao Yuan, Yunpeng Wang, Deli Sang, Yijun Li, Lei Jing, Ruidong Fu, Xiangyi Zhang, Effects of deep cryogenic treatment on the microstructure and mechanical properties of commercial pure zirconium, Journal of Alloys and Compounds, Volume 619, 15 January 2015
  • J.L. Clabel H., V.A.G. Rivera, M. Siu Li, L.A.O. Nunes, E.R. Leite, W.H. Schreiner, E. Marega Jr., Near-infrared light emission of Er3+-doped zirconium oxide thin films: An optical, structural and XPS study, Journal of Alloys and Compounds, Volume 619, 15 January 2015
  • Jie He, Norbert Mattern, Ivan Kaban, Fuping Dai, Kaikai Song, Zhijie Yan, Jiuzhou Zhao, Do Hyang Kim, Jürgen Eckert, Enhancement of glass-forming ability and mechanical behavior of zirconium–lanthanide two-phase bulk metallic glasses, Journal of Alloys and Compounds, Volume 618, 5 January 2015
  • Sali Di, Zhongwen Yao, Mark R. Daymond, Xiaotao Zu, Shuming Peng, Fei Gao, Dislocation-accelerated void formation under irradiation in zirconium, Acta Materialia, Volume 82, 1 January 2015
  • Aurore Mascaro, Caroline Toffolon-Masclet, Caroline Raepsaet, Jean-Claude Crivello, Jean-Marc Joubert, Experimental study and thermodynamic description of the erbium–hydrogen–zirconium ternary system, Journal of Nuclear Materials, Volume 456, January 2015
  • Emilio López-López, Rodrigo Moreno, Carmen Baudín, Fracture strength and fracture toughness of zirconium titanate–zirconia bulk composite materials, Journal of the European Ceramic Society, Volume 35, Issue 1, January 2015
  • Jung G. Lee, M.K. Lee, Microstructural and mechanical characteristics of zirconium alloy joints brazed by a Zr–Cu–Al-based glassy alloy, Materials & Design, Volume 65, January 2015
  • Muhammad Naeem Ashiq, Raheela Beenish Qureshi, Muhammad Aslam Malana, Muhammad Fahad Ehsan, Synthesis, structural, magnetic and dielectric properties of zirconium copper doped M-type calcium strontium hexaferrites, Journal of Alloys and Compounds, Volume 617, 25 December 2014
  • Kai-Ti Hsu, Jason Shian-Ching Jang, Yu-Jing Ren, Pei-Hua Tsai, Chuan Li, Chung-Jen Tseng, Jing-Chie Lin, Chi-Shiung Hsi, I-Ming Hung, Effects of zirconium oxide on the sintering of SrCe1-xZrxO3-d (0.0 ? x ? 0.5), Journal of Alloys and Compounds, Volume 615, Supplement 1, 5 December 2014
  • W. Qin, J.A. Szpunar, N.A.P. Kiran Kumar, J. Kozinski, Microstructural criteria for abrupt ductile-to-brittle transition induced by d-hydrides in zirconium alloys, Acta Materialia, Volume 81, December 2014