Zinc Wire

High Purity Zn Wire
CAS 7440-66-6


Product Product Code Order or Specifications
(2N) 99% Zinc Wire ZN-M-02-W Contact American Elements
(3N) 99.9% Zinc Wire ZN-M-03-W Contact American Elements
(4N) 99.99% Zinc Wire ZN-M-04-W Contact American Elements
(5N) 99.999% Zinc Wire ZN-M-05-W Contact American Elements
(6N) 99.9999% Zinc Wire ZN-M-06-W Contact American Elements

CHEMICAL
IDENTIFIER
Formula CAS No. PubChem SID PubChem CID MDL No. EC No Beilstein
Re. No.
SMILES
Identifier
InChI
Identifier
InChI
Key
Zn 7440-66-6 24880904 23994 MFCD00011291  231-175-3 N/A [Zn] InChI=1S/Zn HCHKCACWOHOZIP-UHFFFAOYSA-N

PROPERTIES Mol. Wt. Appearance Density Tensile Strength Melting Point Boiling Point Thermal Conductivity Electrical Resistivity Eletronegativity Specific Heat Heat of Vaporization Heat of Fusion MSDS
65.37 Yellow 7140 kg/m³ N/A 419.53 °C 907 °C 1.16 W/cm/K @ 298.2 K  5.916 microhm-cm @ 20 oC °C 1.6 Paulings  0.0928 Cal/g/K @ 25 °C 27.4 K-Cal/gm atom at 907 °C 1.595 Cal/gm mole  Safety Data Sheet

American Elements specializes in producing high purity uniform shaped Zinc Wire with the highest possible density High Purity Metal Wire Image for use in semiconductor, Chemical Vapor Deposition (CVD) and Physical Vapor Deposition (PVD) processes including Thermal and Electron Beam (E-Beam) Evaporation, Low Temperature Organic Evaporation, Atomic Layer Deposition (ALD), Metallic-Organic and Chemical Vapor Deposition (MOCVD). Our standard Metal Wire sizes range from 0.75 mm to 1 mm to 2 mm diameter with strict tolerances (See ASTM requirements) and alpha values (conductive resistance) for uses such as gas detection and thermometry tolerances (Also see Nanoparticles) . Please contact us to fabricate custom wire alloys and gauge sizes. Materials are produced using crystallization, solid state and other ultra high purification processes such as sublimation. American Elements specializes in producing custom compositions for commercial and research applications and for new proprietary technologies. American Elements also casts any of the rare earth metals and most other advanced materials into rod, bar or plate form, as well as other machined shapes and through other processes such as nanoparticles (See also application discussion at Nanotechnology Information and at Quantum Dots) and in the form of solutions and organometallics. We can also provide Rod outside this range. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. See safety data and research below and pricing/lead time above. We also produce Zinc as powder, ingot, pieces, pellets, disc, granules and in compound forms, such as oxide. Other shapes are available by request.

Zinc(Zn) atomic and molecular weight, atomic number and elemental symbolZinc (atomic symbol: Zn, atomic number: 30) is a Block D, Group 12, Period 4 element with an atomic weight of 65.38. The number of electrons in each of zinc's shells is 2, 8, 18, 2, and its electron configuration is [Ar] 3d10 4s2. Zinc Bohr ModelThe zinc atom has a radius of 134 pm and a Van der Waals radius of 210 pm. Zinc was discovered by Indian metallurgists prior to 1000 BC and first recognized as a unique element by Rasaratna Samuccaya in 800. Zinc was first isolated by Andreas Marggraf in 1746.Elemental Zinc In its elemental form, zinc has a silver-gray appearance. It is brittle at ordinary temperatures but malleable at 100 °C to 150 °C. It is a fair conductor of electricity, and burns in air at high red producing white clouds of the oxide. Zinc is mined from sulfidic ore deposits. It is the 24th most abundant element in the earth's crust and the fourth most common metal in use (after iron, aluminum, and copper). The name zinc originates from the German word "zin," meaning tin. For more information on zinc, including properties, safety data, research, and American Elements' catalog of zinc products, visit the Zinc Information Center.

HEALTH, SAFETY & TRANSPORTATION INFORMATION
Danger
H251-H261 
F,N 
15-17-50/53 
43-46-60-61 
ZG8600000
UN 1436 4.3/PG 2
nwg
Flame-Flammables        

CUSTOMERS FOR ZINC WIRE HAVE ALSO LOOKED AT
Zinc Bars Zn Cd Se Zinc Foil Tin Bismuth Zinc Alloy Zinc Nanoparticles
Zinc Nitrate Zinc Acetylacetonate Zinc Oxide Sputtering Target Zinc Powder Zinc Acetate
Zinc Oxide Zinc Metal Zinc Pellets Zinc Oxide Pellets Zinc Chloride
Show Me MORE Forms of Zinc

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis





German   Korean   French   Japanese   Spanish   Chinese (Simplified)   Portuguese   Russian   Chinese (Taiwan)  Italian   Turkish   Polish   Dutch   Czech   Swedish   Hungarian   Danish   Hebrew

Production Catalog Available in 36 Countries & Languages


Recent Research & Development for Zinc

  • Hongying Li, Junying Duan, Xiaobing Min, Comparative studies on the initial stage of arc-sprayed and zinc-rich powder coatings in sulfur-rich environment, Journal of Alloys and Compounds, Volume 616, 15 December 2014
  • A.I. Ivon, A.B. Glot, R.I. Lavrov, Zhen-Ya Lu, Grain resistivity in zinc oxide and tin dioxide varistor ceramics, Journal of Alloys and Compounds, Volume 616, 15 December 2014
  • Po-Chieh Li, Chi-Chang Hu, Tai-Chou Lee, Wen-Sheng Chang, Tsin Hai Wang, Synthesis and characterization of carbon black/manganese oxide air cathodes for zinc-air batteries, Journal of Power Sources, Volume 269, 10 December 2014
  • Ashis K. Mandal, S. Balaji, Ranjan Sen, Microwave and conventional preparation of Zinc borate glass: Eu3+ ion as luminescent probe, Journal of Alloys and Compounds, Volume 615, 5 December 2014
  • Zuoqian Wang, Rich Winslow, Deepa Madan, Paul K. Wright, James W. Evans, Malcolm Keif, Xiaoying Rong, Development of MnO2 cathode inks for flexographically printed rechargeable zinc-based battery, Journal of Power Sources, Volume 268, 5 December 2014
  • Renan Azevedo da Rocha, Carolina Leão Quintanilha, Thayná Viana Lanxin, Júlio Carlos Afonso, Cláudio Augusto Vianna, Valdir Gante, José Luiz Mantovano, Production of potassium manganate and barium manganate from spent zinc–MnO2 dry cells via fusion with potassium hydroxide, Journal of Power Sources, Volume 268, 5 December 2014
  • Jianhua Han, Zhifeng Liu, Boluo Yadian, Yizhong Huang, Keying Guo, Zhichao Liu, Bo Wang, Yajun Li, Ting Cui, Synthesis of metal sulfide sensitized zinc oxide-based core/shell/shell nanorods and their photoelectrochemical properties, Journal of Power Sources, Volume 268, 5 December 2014
  • Cem Göl, Mustafa Malkoç, Serkan Yesilot, Mahmut Durmus, Novel zinc(II) phthalocyanine conjugates bearing different numbers of BODIPY and iodine groups as substituents on the periphery, Dyes and Pigments, Volume 111, December 2014
  • Marc Milesi, Roland E. Logé, Yann Jansen, Anisotropic mechanical behavior and formability criterion for zinc sheets, Journal of Materials Processing Technology, Volume 214, Issue 12, December 2014
  • Ming-Wei Wu, Pang-Hsin Lai, Chia-Hong Hong, Fang-Cheng Chou, The sintering behavior, microstructure, and electrical properties of gallium-doped zinc oxide ceramic targets, Journal of the European Ceramic Society, Volume 34, Issue 15, December 2014
  • Sean R. Wagner, Pengpeng Zhang, Nucleation and evolution of zinc phthalocyanine thin films on the deactivated Si(111)-B R30° surface, Surface Science, Volume 630, December 2014
  • Hye-Ji Jeon, Seul-Gi Lee, Kyung-Sik Shin, Sang-Woo Kim, Jin-Seong Park, Growth behaviors and film properties of zinc oxide grown by atmospheric mist chemical vapor deposition, Journal of Alloys and Compounds, Volume 614, 25 November 2014
  • Amin Nourmohammadi, Reza Rahighi, Omid Akhavan, Alireza Moshfegh, Graphene oxide sheets involved in vertically aligned zinc oxide nanowires for visible light photoinactivation of bacteria, Journal of Alloys and Compounds, Volume 612, 5 November 2014
  • Ian Y.Y. Bu, Sol–gel production of wrinkled fluorine doped zinc oxide through hydrofluride acid, Ceramics International, Volume 40, Issue 9, Part B, November 2014
  • G. Biasotto, M.G.A. Ranieri, C.R Foschini, A.Z. Simões, E. Longo, M.A. Zaghete, Gas sensor applications of zinc oxide thin film grown by the polymeric precursor method, Ceramics International, Volume 40, Issue 9, Part B, November 2014
  • Hadi Barzegar Bafrooei, Ehsan Taheri Nassaj, Touradj Ebadzadeh, Chunfeng Hu, Sintering behavior and microwave dielectric properties of nano zinc niobate powder, Ceramics International, Volume 40, Issue 9, Part A, November 2014
  • Andrea Bencini, Francesco Bartoli, Claudia Caltagirone, Vito Lippolis, Zinc(II)-based fluorescent dyes: Luminescence modulation by phosphate anion binding, Dyes and Pigments, Volume 110, November 2014
  • Alexey N. Gusev, Victor F. Shul’gin, Svetlana B. Meshkova, Sergey S. Smola, Wolfgang Linert, A novel triazole-based fluorescent chemosensor for Zinc ions, Journal of Luminescence, Volume 155, November 2014
  • P. Vanathi, P. Rajiv, S. Narendhran, Sivaraj Rajeshwari, Pattanathu K.S.M. Rahman, Rajendran Venckatesh, Biosynthesis and characterization of phyto mediated zinc oxide nanoparticles: A green chemistry approach, Materials Letters, Volume 134, 1 November 2014
  • Jih-Hsin Liu, L. Saravanan, Zinc oxide loaded MWCNT buckypaper for the efficient photocurrent generation, Materials Letters, Volume 134, 1 November 2014