Zirconium Fluoride

ZrF4
CAS 7783-64-4


Product Product Code Order or Specifications
(2N) 99% Zirconium Fluoride ZR-F-02 Contact American Elements
(3N) 99.9% Zirconium Fluoride ZR-F-03 Contact American Elements
(4N) 99.99% Zirconium Fluoride ZR-F-04 Contact American Elements
(5N) 99.999% Zirconium Fluoride ZR-F-05 Contact American Elements

CHEMICAL
IDENTIFIER
Formula CAS No. PubChem SID PubChem CID MDL No. EC No IUPAC Name Beilstein
Re. No.
SMILES
Identifier
InChI
Identifier
InChI
Key
ZrF4 7783-64-4 24858527 82216 MFCD00011307 232-018-1 Tetraluorozirconium N/A F[Zr](F)(F)F InChI=1S/4FH.Zr/h4*1H;/q;;;;+4/p-4 OMQSJNWFFJOIMO-UHFFFAOYSA-J

PROPERTIES Compound Formula Mol. Wt. Appearance Melting Point Boiling Point Density

Exact Mass

Monoisotopic Mass Charge MSDS
F4Zr 167.22 White Crystalline Solid 910° C
(1,670° F)
N/A 4.43 g/cm3 165.898 g/mo 165.898315 Da 0 Safety Data Sheet

Fluoride IonZirconium Fluoride is a water insoluble Zirconium source for use in oxygen-sensitive applications, such as metal production. Fluoride compounds have diverse applications in current technologies and science, from oil refining and etching to synthetic organic chemistry and the manufacture of pharmaceuticals. Magnesium Fluoride, for example, was used by researchers at the Max Planck Institute for Quantum Optics in 2013 to create a novel mid-infrared optical frequency comb composed of crystalline microresonators, a development that may lead to future advances in molecular spectroscopy. Fluorides are also commonly used to alloy metals and for optical deposition. Zirconium Fluoride is generally immediately available in most volumes. Ultra high purity and high purity compositions improve both optical quality and usefulness as scientific standards. Nanoscale (See also Nanotechnology Information and Quantum Dots) elemental powders and suspensions, as alternative high surface area forms, may be considered. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement.

Zirconium (Zr) atomic and molecular weight, atomic number and elemental symbol Zirconium (atomic symbol: Zr, atomic number: 40) is a Block D, Group 4, Period 5 element with an atomic weight of 91.224. Zirconium Bohr ModelThe number of electrons in each of Zirconium's shells is 2, 8, 18, 10, 2 and its electron configuration is [Kr] 4d2 5s2. The zirconium atom has a radius of 160 pm and a Van der Waals radius of 186 pm. Zirconium was discovered by Martin Heinrich Klaproth in 1789 and first isolated by Jöns Jakob Berzelius in 1824. Elemental ZirconiumIn its elemental form, zirconium has a silvery white appearance that is similar to titanium. Zirconium's principal mineral is zircon (zirconium silicate). Zirconium is commercially produced as a by-product of titanium and tin mining and has many applications as a opacifier and a refractory material. It is not found in nature as a free element. The name of zirconium comes from the mineral zircon, the most important source of zirconium, and from the Persian word 'zargun' meaning gold-like. For more information on zirconium, including properties, safety data, research, and American Elements' catalog of zirconium products, visit the Zirconium Information Center.

HEALTH, SAFETY & TRANSPORTATION INFORMATION
Danger
H314
C
34
26-27-28-36/37/39-45
ZH7875000
UN 3260 8/PG 2
3
Corrosion-Corrosive to metals        

ZIRCONIUM FLUORIDE SYNONYMS
Zirconium(IV) fluoride, Zirconium(4+) tetrafluoride, Zirconium tetrafluoride, Tetraluorozirconium

CUSTOMERS FOR ZIRCONIUM FLUORIDE HAVE ALSO LOOKED AT
Aluminum Zirconium Alloy Zirconium Wire Zirconium Powder Zirconium Oxide Zirconium Pellets
Zirconium Acetate Zirconium Foil Zirconium Oxide Pellets Zirconium Metal Zirconium Acetylacetonate
Zirconium Nitrate Solution Zirconium Nanoparticles Zirconium Scandium Iron Alloy Zirconium Sputtering Target Zirconium Chloride
Show Me MORE Forms of Zirconium

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis





German   Korean   French   Japanese   Spanish   Chinese (Simplified)   Portuguese   Russian   Chinese (Taiwan)  Italian   Turkish   Polish   Dutch   Czech   Swedish   Hungarian   Danish   Hebrew

Production Catalog Available in 36 Countries & Languages


Recent Research & Development for Zirconium

  • Chao Yuan, Yunpeng Wang, Deli Sang, Yijun Li, Lei Jing, Ruidong Fu, Xiangyi Zhang, Effects of deep cryogenic treatment on the microstructure and mechanical properties of commercial pure zirconium, Journal of Alloys and Compounds, Volume 619, 15 January 2015
  • J.L. Clabel H., V.A.G. Rivera, M. Siu Li, L.A.O. Nunes, E.R. Leite, W.H. Schreiner, E. Marega Jr., Near-infrared light emission of Er3+-doped zirconium oxide thin films: An optical, structural and XPS study, Journal of Alloys and Compounds, Volume 619, 15 January 2015
  • Jie He, Norbert Mattern, Ivan Kaban, Fuping Dai, Kaikai Song, Zhijie Yan, Jiuzhou Zhao, Do Hyang Kim, Jürgen Eckert, Enhancement of glass-forming ability and mechanical behavior of zirconium–lanthanide two-phase bulk metallic glasses, Journal of Alloys and Compounds, Volume 618, 5 January 2015
  • Sali Di, Zhongwen Yao, Mark R. Daymond, Xiaotao Zu, Shuming Peng, Fei Gao, Dislocation-accelerated void formation under irradiation in zirconium, Acta Materialia, Volume 82, 1 January 2015
  • Aurore Mascaro, Caroline Toffolon-Masclet, Caroline Raepsaet, Jean-Claude Crivello, Jean-Marc Joubert, Experimental study and thermodynamic description of the erbium–hydrogen–zirconium ternary system, Journal of Nuclear Materials, Volume 456, January 2015
  • Emilio López-López, Rodrigo Moreno, Carmen Baudín, Fracture strength and fracture toughness of zirconium titanate–zirconia bulk composite materials, Journal of the European Ceramic Society, Volume 35, Issue 1, January 2015
  • Jung G. Lee, M.K. Lee, Microstructural and mechanical characteristics of zirconium alloy joints brazed by a Zr–Cu–Al-based glassy alloy, Materials & Design, Volume 65, January 2015
  • Muhammad Naeem Ashiq, Raheela Beenish Qureshi, Muhammad Aslam Malana, Muhammad Fahad Ehsan, Synthesis, structural, magnetic and dielectric properties of zirconium copper doped M-type calcium strontium hexaferrites, Journal of Alloys and Compounds, Volume 617, 25 December 2014
  • Kai-Ti Hsu, Jason Shian-Ching Jang, Yu-Jing Ren, Pei-Hua Tsai, Chuan Li, Chung-Jen Tseng, Jing-Chie Lin, Chi-Shiung Hsi, I-Ming Hung, Effects of zirconium oxide on the sintering of SrCe1-xZrxO3-d (0.0 ? x ? 0.5), Journal of Alloys and Compounds, Volume 615, Supplement 1, 5 December 2014
  • W. Qin, J.A. Szpunar, N.A.P. Kiran Kumar, J. Kozinski, Microstructural criteria for abrupt ductile-to-brittle transition induced by d-hydrides in zirconium alloys, Acta Materialia, Volume 81, December 2014

Recent Research & Development for Fluorides

  • Guoxin Hu, Feng Gao, Jie Kong, Shengjie Yang, Qingqing Zhang, Zhengtang Liu, Yong Zhang, Huajun Sun, Preparation and dielectric properties of poly(vinylidene fluoride)/Ba0.6Sr0.4TiO3 composites, Journal of Alloys and Compounds, Volume 619, 15 January 2015
  • Hong Yeong Kim, Hyun Gyu Im, Suk-Kyu Chang, Colorimetric and fluorogenic signaling of fluoride ions by thiophosphinated dichlorofluorescein, Dyes and Pigments, Volume 112, January 2015
  • A.P. Voitovich, V.S. Kalinov, A.P. Stupak, A.N. Novikov, L.P. Runets, Near-surface layer radiation color centers in lithium fluoride nanocrystals: Luminescence and composition, Journal of Luminescence, Volume 157, January 2015
  • Shengji Xia, Muzi Ni, Preparation of poly(vinylidene fluoride) membranes with graphene oxide addition for natural organic matter removal, Journal of Membrane Science, Volume 473, 1 January 2015
  • Zhaoliang Cui, Naser Tavajohi Hassankiadeh, Suk Young Lee, Kyung Taek Woo, Jong Myung Lee, Aldo Sanguineti, Vincenzo Arcella, Young Moo Lee, Enrico Drioli, Tailoring novel fibrillar morphologies in poly(vinylidene fluoride) membranes using a low toxic triethylene glycol diacetate (TEGDA) diluent, Journal of Membrane Science, Volume 473, 1 January 2015
  • Jinliang Song, Yanling Zhao, Xiujie He, Baoliang Zhang, Li Xu, Zhoutong He, DongSheng Zhang, Lina Gao, Huihao Xia, Xingtai Zhou, Ping Huai, Shuo Bai, Preparation of pyrolytic carbon coating on graphite for inhibiting liquid fluoride salt and Xe135 penetration for molten salt breeder reactor, Journal of Nuclear Materials, Volume 456, January 2015
  • Zhaozheng Qiu, Min Su, Liling Wei, Hongliang Han, Qibo Jia, Jianquan Shen, Improvement of microbial fuel cell cathodes using cost-effective polyvinylidene fluoride, Journal of Power Sources, Volume 273, 1 January 2015
  • Xin Zhao, Liangmiao Zhang, Pan Xiong, Wenjing Ma, Na Qian, Wencong Lu, A novel method for synthesis of Co–Al layered double hydroxides and their conversions to mesoporous CoAl2O4 nanostructures for applications in adsorption removal of fluoride ions, Microporous and Mesoporous Materials, Volume 201, 1 January 2015
  • Pritty Rao, Sanjiv Kumar, R.B. Tokas, N.K. Sahoo, A probe into compositional and structural dependence of optical properties of lanthanum fluoride films prepared by resistive heating, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Volume 342, 1 January 2015
  • Zhaohua Li, Le Liu, Lihong Yu, Lei Wang, Jingyu Xi, Xinping Qiu, Liquan Chen, Characterization of sulfonated poly(ether ether ketone)/poly(vinylidene fluoride-co-hexafluoropropylene) composite membrane for vanadium redox flow battery application, Journal of Power Sources, Volume 272, 25 December 2014