Zirconium Sheet

High Purity Zr Sheet
CAS 7440-67-7

Product Product Code Order or Specifications
(2N) 99% Zirconium Sheet ZR-M-02-SHE Contact American Elements
(2N5) 99.5% Zirconium Sheet ZR-M-025-SHE Contact American Elements
(3N) 99.9% Zirconium Sheet ZR-M-03-SHE Contact American Elements
(3N5) 99.95% Zirconium Sheet ZR-M-035-SHE Contact American Elements
(4N) 99.99% Zirconium Sheet ZR-M-04-SHE Contact American Elements
(5N) 99.999% Zirconium Sheet ZR-M-05-SHE Contact American Elements

Formula CAS No. PubChem SID PubChem CID MDL No. EC No Beilstein
Re. No.
Zr 7440-67-7 24865177 23995 MFCD00011303  N/A N/A [Zr] InChI=1S/Zr QCWXUUIWCKQGHC-UHFFFAOYSA-N

PROPERTIES Mol. Wt. Appearance Density Tensile Strength Melting Point Boiling Point Thermal Conductivity Electrical Resistivity Eletronegativity Specific Heat Heat of Vaporization Heat of Fusion MSDS
91.22 White 6506 kg/m³ 230 MPa 1852 °C 3580 °C 0.227 W/cm/K @ 298.2 K  40.0 microhm-cm @ 20 oC °C 1.4 Paulings  0.0671 Cal/g/K @ 25 oC °C 120 K-Cal/gm atom at 4377 °C 5.50 Cal/gm mole  Safety Data Sheet

High Purity SheetAmerican Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopeia/British Pharmacopeia) and follows applicable ASTM testing standards.See safety data and research below and pricing/lead time above. American Elements specializes in producing Zirconium as rolled sheets in various thicknesses and sizes. Most sheets are produced from cast Ingots for use in coating and thin film Chemical Vapor Deposition (CVD) and Physical Vapor Deposition (PVD) processes including Thermal and Electron Beam (E-Beam) Evaporation, Low Temperature Organic Evaporation, Atomic Layer Deposition (ALD), Organometallic and Chemical Vapor Deposition (MOCVD) for specific applications such as fuel cells and solar energy. Thickness can range from 0.04" to 0.25" for all metals. Materials are produced using crystallization, solid state and other ultra high purification processes such as sublimation. American Elements specializes in producing custom compositions for commercial and research applications and for new proprietary technologies. American Elements also casts any of the rare earth metals and most other advanced materials into rod, bar or plate form, as well as other machined shapes and through other processes such as nanoparticles (See also application discussion at Nanotechnology Information and at Quantum Dots) and in the form of solutions and organometallics. We also produce Zirconium as rods, powder and plates. Other shapes are available by request.

Zirconium (Zr) atomic and molecular weight, atomic number and elemental symbol Zirconium (atomic symbol: Zr, atomic number: 40) is a Block D, Group 4, Period 5 element with an atomic weight of 91.224. Zirconium Bohr ModelThe number of electrons in each of Zirconium's shells is 2, 8, 18, 10, 2 and its electron configuration is [Kr] 4d2 5s2. The zirconium atom has a radius of 160 pm and a Van der Waals radius of 186 pm. Zirconium was discovered by Martin Heinrich Klaproth in 1789 and first isolated by Jöns Jakob Berzelius in 1824. Elemental ZirconiumIn its elemental form, zirconium has a silvery white appearance that is similar to titanium. Zirconium's principal mineral is zircon (zirconium silicate). Zirconium is commercially produced as a by-product of titanium and tin mining and has many applications as a opacifier and a refractory material. It is not found in nature as a free element. The name of zirconium comes from the mineral zircon, the most important source of zirconium, and from the Persian word 'zargun' meaning gold-like. For more information on zirconium, including properties, safety data, research, and American Elements' catalog of zirconium products, visit the Zirconium Information Center.

UN 1358 4.1/PG 2

Aluminum Zirconium Alloy Zirconium Wire Zirconium Powder Zirconium Oxide Zirconium Pellets
Zirconium Acetate Zirconium Foil Zirconium Oxide Pellets Zirconium Metal Zirconium Acetylacetonate
Zirconium Nitrate Solution Zirconium Nanoparticles Zirconium Scandium Iron Alloy Zirconium Sputtering Target Zirconium Chloride
Show Me MORE Forms of Zirconium

Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.

Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis

German   Korean   French   Japanese   Spanish   Chinese (Simplified)   Portuguese   Russian   Chinese (Taiwan)  Italian   Turkish   Polish   Dutch   Czech   Swedish   Hungarian   Danish   Hebrew

Production Catalog Available in 36 Countries & Languages

Recent Research & Development for Zirconium

  • Wanying Geng, Ge Zhu, Yurong Shi, Yuhua Wang, Luminescent characteristics of Dy3+ doped calcium zirconium phosphate CaZr4(PO4)6 (CZP) phosphor for warm-white LEDs, Journal of Luminescence, Volume 155, November 2014
  • I. Kratochvílová, R. Škoda, J. Škarohlíd, P. Ashcheulov, A. Jäger, J. Racek, A. Taylor, L. Shao, Nanosized polycrystalline diamond cladding for surface protection of zirconium nuclear fuel tubes, Journal of Materials Processing Technology, Volume 214, Issue 11, November 2014
  • Sangjoon Ahn, Sandeep Irukuvarghula, Sean M. McDeavitt, Thermophysical investigations of the uranium–zirconium alloy system, Journal of Alloys and Compounds, Volume 611, 25 October 2014
  • Yueming Ren, Pingxin Liu, Xiaoli Liu, Jing Feng, Zhuangjun Fan, Tianzhu Luan, Preparation of zirconium oxy ion-imprinted particle for the selective separation of trace zirconium ion from water, Journal of Colloid and Interface Science, Volume 431, 1 October 2014
  • Tingshun Jiang, Jinlian Cheng, Wangping Liu, Lie Fu, Xuping Zhou, Qian Zhao, Hengbo Yin, Sulfuric acid functional zirconium (or aluminum) incorporated mesoporous MCM-48 solid acid catalysts for alkylation of phenol with tert-butyl alcohol, Journal of Solid State Chemistry, Volume 218, October 2014
  • Lucimara B. Panice, Elisangela A. de Oliveira, Ricardo A.D. Molin Filho, Daniela P. de Oliveira, Angélica M. Lazarin, Elza I.S. Andreotti, Rosana L. Sernaglia, Yoshitaka Gushikem, Electrochemical properties of the hexacyanoferrate(II)–ruthenium(III) complex immobilized on silica gel surface chemically modified with zirconium(IV) oxide, Materials Science and Engineering: B, Volume 188, October 2014
  • Z. Amghouz, C. Ancín-Azpilicueta, K.K. Burusco, J.R. García, S.A. Khainakov, A. Luquin, R. Nieto, J.J. Garrido, Biogenic amines in wine: Individual and competitive adsorption on a modified zirconium phosphate, Microporous and Mesoporous Materials, Volume 197, October 2014
  • Mario Casciola, Paula Cojocaru, Anna Donnadio, Stefano Giancola, Luca Merlo, Yannig Nedellec, Monica Pica, Surya Subianto, Zirconium phosphate reinforced short side chain perflurosulfonic acid membranes for medium temperature proton exchange membrane fuel cell application, Journal of Power Sources, Volume 262, 15 September 2014
  • Abubaker Abutartour, Yunjie Jia, Lotfia El Majdoub, Qinghong Xu, A new hierarchical porous zirconium phosphate membrane and its adsorption properties, Microporous and Mesoporous Materials, Volume 196, 15 September 2014
  • Hasan Gocmez, Mustafa Tuncer, Yavuz Selim Yeniceri, Low temperature synthesis and pressureless sintering of nanocrystalline zirconium diboride powders, Ceramics International, Volume 40, Issue 8, Part A, September 2014
  • W.J. Kelvin Chew, M. Amiriyan, A. Yaghoubi, S. Ramesh, J. Purbolaksono, R. Tolouei, W.D. Teng, D.K. Agrawal, Sintering properties and thermal depletion of boron in zirconia–zirconium diboride conductive ceramic, Ceramics International, Volume 40, Issue 8, Part B, September 2014
  • Mohammed Ibrahim Jamesh, Guosong Wu, Ying Zhao, Weihong Jin, David R. McKenzie, Marcela M.M. Bilek, Paul K. Chu, Effects of zirconium and nitrogen plasma immersion ion implantation on the electrochemical corrosion behavior of Mg–Y–RE alloy in simulated body fluid and cell culture medium, Corrosion Science, Volume 86, September 2014
  • S. Mukherjee, S. Kaity, M.T. Saify, S.K. Jha, P.K. Pujari, Evidence of zirconium nano-agglomeration in as-cast dilute U–Zr alloys, Journal of Nuclear Materials, Volume 452, Issues 1–3, September 2014
  • A. Rico, M.A. Martin-Rengel, J. Ruiz-Hervias, J. Rodriguez, F.J. Gomez-Sanchez, Nanoindentation measurements of the mechanical properties of zirconium matrix and hydrides in unirradiated pre-hydrided nuclear fuel cladding, Journal of Nuclear Materials, Volume 452, Issues 1–3, September 2014
  • Adrien Couet, Arthur T. Motta, Benoit de Gabory, Zhonghou Cai, Microbeam X-ray Absorption Near-Edge Spectroscopy study of the oxidation of Fe and Nb in zirconium alloy oxide layers, Journal of Nuclear Materials, Volume 452, Issues 1–3, September 2014
  • Haneul Yoo, Whangi Kim, Hyunchul Ju, A numerical comparison of hydrogen absorption behaviors of uranium and zirconium cobalt-based metal hydride beds, Solid State Ionics, Volume 262, 1 September 2014
  • Martynas Audronis, Allan Matthews, Kestutis Juškevicius, Ramutis Drazdys, Unlocking the potential of voltage control for high rate zirconium and hafnium oxide deposition by reactive magnetron sputtering, Vacuum, Volume 107, September 2014
  • G. Antou, M. Gendre, E. Laborde, A. Maître, G. Trolliard, High temperature compressive creep of spark plasma sintered zirconium (oxy-)carbide, Materials Science and Engineering: A, Volume 612, 26 August 2014
  • Fei Li, Zhuang Kang, Xiao Huang, Guo-Jun Zhang, Fabrication of zirconium carbide nanofibers by electrospinning, Ceramics International, Volume 40, Issue 7, Part A, August 2014
  • Cuiyan Li, Kezhi Li, Hejun Li, Yulei Zhang, Haibo Ouyang, Dongjia Yao, Lei Liu, Microstructure and ablation resistance of carbon/carbon composites with a zirconium carbide rich surface layer, Corrosion Science, Volume 85, August 2014