Skip to Page Content

Zirconyl Nitrate

ZrO(NO3)2·xH2O
CAS 14985-18-3


Product Product Code Request Quote
(2N) 99% Zirconyl Nitrate ZR-NAT-02 Request Quote
(3N) 99.9% Zirconyl Nitrate ZR-NAT-03 Request Quote
(4N) 99.99% Zirconyl Nitrate ZR-NAT-04 Request Quote
(5N) 99.999% Zirconyl Nitrate ZR-NAT-05 Request Quote

CHEMICAL
IDENTIFIER
Formula CAS No. PubChem CID MDL No. EC No IUPAC Name Beilstein
Re. No.
SMILES
Identifier
InChI
Identifier
InChI
Key
ZrO(NO3)2·xH2O 14985-18-3 N/A MFCD00149896 237-529-3 N/A N/A Oxozirconium(2+) nitrate hydrate (1:2:1) InChI=1S/2NO
3.H2O.O.Zr/c2*2-1(3)4;;;/h;;1H2;;/q2*
-1;;;+2
BGMQNYCWAL
SARE-UHFFFAOYSA-N

PROPERTIES Compound Formula Mol. Wt. Appearance Density Exact Mass Monoisotopic Mass Charge MSDS
H2N2O7Zr 231.23 White Powder 1.415 g/cm3 N/A 231.891 g/mol 0 Safety Data Sheet

Nitrate IonZirconyl Nitrate is a highly water soluble crystalline Zirconium source for uses compatible with nitrates and lower (acidic) pH. Nitrate compounds are generally soluble in water. Nitrate materials are also oxidizing agents. When mixed with hydrocarbons, nitrate compounds can form a flammable mixture. Nitrates are excellent precursors for production of ultra high purity compounds and certain catalyst and nanoscale(nanoparticles and nanopowders) materials. All metallic nitrates are inorganic salts of a given metal cation and the nitrate anion. The nitrate anion is a univalent (-1 charge) polyatomic ion composed of a single nitrogen atom ionically bound to three oxygen atoms (Symbol: NO3) for a total formula weight of 62.05. Zirconium Nitrate is generally immediately available in most volumes. High purity, submicron and nanopowder forms may be considered. We also produce Zirconium Nitrate Solution. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement.

Zirconium (Zr) atomic and molecular weight, atomic number and elemental symbol Zirconium (atomic symbol: Zr, atomic number: 40) is a Block D, Group 4, Period 5 element with an atomic weight of 91.224. Zirconium Bohr ModelThe number of electrons in each of Zirconium's shells is 2, 8, 18, 10, 2 and its electron configuration is [Kr] 4d2 5s2. The zirconium atom has a radius of 160 pm and a Van der Waals radius of 186 pm. Zirconium was discovered by Martin Heinrich Klaproth in 1789 and first isolated by Jöns Jakob Berzelius in 1824. Elemental ZirconiumIn its elemental form, zirconium has a silvery white appearance that is similar to titanium. Zirconium's principal mineral is zircon (zirconium silicate). Zirconium is commercially produced as a byproduct of titanium and tin mining and has many applications as a opacifier and a refractory material. It is not found in nature as a free element. The name of zirconium comes from the mineral zircon, the most important source of zirconium, and from the Persian wordzargun, meaning gold-like. For more information on zirconium, including properties, safety data, research, and American Elements' catalog of zirconium products, visit the Zirconium element page.

HEALTH, SAFETY & TRANSPORTATION INFORMATION
Danger
H272-H314
O,C
8-34
17-26-28-36/37/39-45
N/A
UN 3085 5.1/PG 2
1
Flame Over Circle-Oxidizing gases and liquids Corrosion-Corrosive to metals      

ZIRCONYL NITRATE SYNONYMS
Zirconyl nitrate hydrate, Bis(nitrato)oxozirconium, Ketozirconium nitric acid, Zirconium(IV) oxynitrate hydrate, Zirconium dinitrate oxide, Nitric acid oxozirconium, Zirconyl dinitrate, Oxozirconium(2+) nitrate hydrate (1:2:1)

CUSTOMERS FOR ZIRCONIUM HAVE ALSO LOOKED AT
Aluminum Zirconium Alloy Zirconium Wire Zirconium Powder Zirconium Oxide Zirconium Pellets
Zirconium Acetate Zirconium Foil Zirconium Oxide Pellets Zirconium Metal Zirconium Acetylacetonate
Zirconium Nitrate Solution Zirconium Nanoparticles Zirconium Scandium Iron Alloy Zirconium Sputtering Target Zirconium Chloride
Show Me MORE Forms of Zirconium

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis

Recent Research & Development for Zirconium

  • Electrochemical Film Deposition of the Zirconium Metal-Organic Framework UiO-66 and Application in Miniaturized Sorbent Trap. Ivo Stassen, Mark J Styles, Tom R.C. Van Assche, Nicolo Campagnol, Jan Fransaer, Joeri F.M. Denayer, Jin-Chong Tan, Paolo Falcaro, Dirk E. De Vos, and Rob Paolo Ameloot. Chem. Mater.: February 16, 2015
  • Ceria Doped with Zirconium and Lanthanide oxides to Enhance Solar Thermochemical Production of Fuels. Friedemann Call, Martin Roeb, Martin Schmuecker, Christian Sattler, and Robert Pitz-Paal. J. Phys. Chem. C: February 10, 2015
  • Strain-Tunable One Dimensional Photonic Crystals Based on Zirconium Dioxide/Slide-Ring Elastomer Nanocomposites for Mechanochromic Sensing. Irene R. Howell, Cheng Li, Nicholas S. Colella, Kohzo Ito, and James J. Watkins. ACS Appl. Mater. Interfaces: January 26, 2015
  • Probing Reactive Platinum Sites in UiO-67 Zirconium Metal–Organic Frameworks. Sigurd Øien, Giovanni Agostini, Stian Svelle, Elisa Borfecchia, Kirill A. Lomachenko, Lorenzo Mino, Erik Gallo, Silvia Bordiga, Unni Olsbye, Karl Petter Lillerud, and Carlo Lamberti. Chem. Mater.: January 7, 2015
  • Zirconium-Catalyzed Desymmetrization of Aminodialkenes and Aminodialkynes through Enantioselective Hydroamination. Kuntal Manna, Naresh Eedugurala, and Aaron D. Sadow. J. Am. Chem. Soc.: January 2, 2015
  • Trinuclear Zirconium Polyhydride ({Cp*Zr(BH3CH3)}(?-H)2{Cp*Zr(BH3CH3)}(?-H){Cp*Zr(BH3CH3)})(?-?2C,H:?1C:?2C,H-CHBH3) and Its Derivatives: Compounds Containing a Pentacoordinated Carbon Atom. Fu-Chen Liu, Heng-Guang Chen, and Gene-Hsiang Lee. Organometallics: December 19, 2014
  • Topology-Guided Design and Syntheses of Highly Stable Mesoporous Porphyrinic Zirconium Metal–Organic Frameworks with High Surface Area. Tian-Fu Liu, Dawei Feng, Ying-Pin Chen, Lanfang Zou, Mathieu Bosch, Shuai Yuan, Zhangwen Wei, Stephen Fordham, Kecheng Wang, and Hong-Cai Zhou. J. Am. Chem. Soc.: December 12, 2014
  • A Layered Mixed Zirconium Phosphate/Phosphonate with Exposed Carboxylic and Phosphonic Groups: X-ray Powder Structure and Proton Conductivity Properties. Anna Donnadio, Morena Nocchetti, Ferdinando Costantino, Marco Taddei, Mario Casciola, Fábio da Silva Lisboa, and Riccardo Vivani. Inorg. Chem.: November 26, 2014
  • Design and Optimization of a Phosphopeptide Anchor for Specific Immobilization of a Capture Protein on Zirconium Phosphonate Modified Supports. Hao Liu, Clémence Queffélec, Cathy Charlier, Alain Defontaine, Amina Fateh, Charles Tellier, Daniel R. Talham, and Bruno Bujoli. Langmuir: November 3, 2014
  • Neutral and Cationic Zirconium Hydrides Supported by a Dianionic (NNNN)-Type Macrocycle Ligand. Heiko Kulinna, Thomas P. Spaniol, and Jun Okuda. Organometallics: October 3, 2014

Recent Research & Development for Nitrates

  • Surface-Enhanced Nitrate Photolysis on Ice. Guillaume Marcotte, Patrick Marchand, Stéphanie Pronovost, Patrick Ayotte, Carine Laffon, and Philippe Parent. J. Phys. Chem. A: February 11, 2015
  • Enhancement of Nitrite and Nitrate Electrocatalytic Reduction through the Employment of Self-Assembled Layers of Nickel- and Copper-Substituted Crown-Type Heteropolyanions. Shahzad Imar, Chiara Maccato, Calum Dickinson, Fathima Laffir, Mikhail Vagin, and Timothy McCormac. Langmuir: February 2, 2015
  • Facultative Nitrate Reduction by Electrode-Respiring Geobacter Metallireducens Biofilms as a Competitive Reaction to Electrode Reduction in a Bioelectrochemical System. Hiroyuki Kashima and John M. Regan. Environ. Sci. Technol.: January 27, 2015
  • Reactions of Rare Earth Hydrated Nitrates and oxides with Formamide: Relevant to Recycling Rare Earth Metals. Pradeep Samarasekere, Xiqu Wang, Watchareeya Kaveevivitchai, and Allan J. Jacobson. Crystal Growth & Design: January 20, 2015
  • Thermodynamic Modeling of Apparent Molal Volumes of Metal Nitrate Salts with Pitzer Model. Mouad Arrad, Mohammed Kaddami, Hannu Sippola, and Pekka Taskinen. J. Chem. Eng. Data: January 16, 2015
  • Fast Diffusion Reaction in the Composition and Morphology of Coprecipitated Carbonates and Nitrates of Copper(II), Magnesium(II), and Zinc(II). J. Michael Davidson, Khellil Sefiane, and Tiffany Wood. Ind. Eng. Chem. Res.: January 14, 2015
  • Novel Approach for the Preparation of Hydroxylammonium Nitrate from the Acid-Catalyzed Hydrolysis of Cyclohexanone Oxime. Fangfang Zhao, Kuiyi You, Ruige Li, Shan Tan, Pingle Liu, Jian Wu, Qiuhong Ai, and He’an Luo. Ind. Eng. Chem. Res.: January 6, 2015
  • Comparative Lipidomic Profiling of Two Dunaliella tertiolecta Strains with Different Growth Temperatures under Nitrate-Deficient Conditions. So-Hyun Kim, Hye Min Ahn, Sa Rang Lim, Seong-Joo Hong, Byung-Kwan Cho, Hookeun Lee, Choul-Gyun Lee, and Hyung-Kyoon Choi. J. Agric. Food Chem.: December 30, 2014
  • Independence of Nitrate and Nitrite Inhibition of Desulfovibrio vulgaris Hildenborough and Use of Nitrite as a Substrate for Growth. Hannah L. Korte, Avneesh Saini, Valentine V. Trotter, Gareth P. Butland, Adam P. Arkin, and Judy D. Wall. Environ. Sci. Technol.: December 22, 2014
  • Nitrate Concentration near the Surface of Frozen Aqueous Solutions. Harley A. Marrocco and Rebecca R. H. Michelsen. J. Phys. Chem. B: December 15, 2014