0D/2D Z-Scheme Heterojunctions of Bismuth Tantalate Quantum Dots/Ultrathin g-CN Nanosheets for Highly Efficient Visible Light Photocatalytic Degradation of Antibiotics.

Title 0D/2D Z-Scheme Heterojunctions of Bismuth Tantalate Quantum Dots/Ultrathin g-CN Nanosheets for Highly Efficient Visible Light Photocatalytic Degradation of Antibiotics.
Authors K. Wang; G. Zhang; J. Li; Y. Li; X. Wu
Journal ACS Appl Mater Interfaces
DOI 10.1021/acsami.7b14275
Abstract

Constructing 0D/2D Z-scheme photocatalysts is a great promising path to improve photocatalytic activity by  efficiently enhancing charge separation. Herein, we fabricated a visible-light-responsive BiTaO quantum dots (QDs)/g-CN nanosheets (NSs) 0D/2D Z-scheme composite via a facile ultrasound method, and BiTaO QDs could be interspersed on the surface of g-CN NSs uniformly. Furthermore, the strong interaction between BiTaO QDs and g-CN NSs disturbed the CN heterocycles by forming C?O bonds between C atoms of the N-(C) group and O atoms of the Ta-O bond. The optimum composite with 20 wt % g-CN NSs showed the superior photocatalytic activity for degradation of ciprofloxacin (CIP) over the composites prepared by mechanical mixing and solid-state methods, the photocatalytic efficiency of which were 4 and 12.2 times higher than those of bare BiTaO and g-CN. Photoluminescence (PL), time-resolved transient PL decay spectra, and photocurrent together verify that the photogenerated hole-electron pairs in this 0D/2D Z-scheme composite have been effectively separated. The enhanced photocatalytic activity of as-synthesized photocatalysts could be attributed to the synergistic effect of efficient Z-scheme charge separation, highly dispersed 0D BiTaO nanocrystals, coordinating sites of 2D g-CN NSs and the strong coupling between them. This study might pave the way toward designing novel visible-light-induced 0D/2D photocatalyst systems for highly efficient degradation of antibiotics.

Citation K. Wang; G. Zhang; J. Li; Y. Li; X. Wu.0D/2D Z-Scheme Heterojunctions of Bismuth Tantalate Quantum Dots/Ultrathin g-CN Nanosheets for Highly Efficient Visible Light Photocatalytic Degradation of Antibiotics.. ACS Appl Mater Interfaces. 2017;9(50):4370443715. doi:10.1021/acsami.7b14275

Related Elements

Tantalum

See more Tantalum products. Tantalum (atomic symbol: Ta, atomic number: 73) is a Block D, Group 5, Period 6 element with an atomic weight of 180.94788. Tantalum Bohr ModelThe number of electrons in each of tantalum's shells is [2, 8, 18, 32, 11, 2] and its electron configuration is [Xe] 4f14 5d3 6s2. The tantalum atom has a radius of 146 pm and a Van der Waals radius of 217 pm. High Purity (99.999%) Tantalum (Ta) MetalTantalum was first discovered by Anders G. Ekeberg in 1802 in Uppsala, Sweden however, it was not until 1844 when Heinrich Rose first recognized it as a distinct element. In its elemental form, tantalum has a grayish blue appearance. Tantalum is found in the minerals tantalite, microlite, wodginite, euxenite, and polycrase. Due to the close relation of tantalum to niobium in the periodic table, Tantalum's name originates from the Greek word Tantalos meaning Father of Niobe in Greek mythology.

Bismuth

See more Bismuth products. Bismuth (atomic symbol: Bi, atomic number: 83) is a Block P, Group 15, Period 6 element with an atomic radius of 208.98040. The number of electrons in each of Bismuth's shells is 2, 8, 18, 32, 18, 5 and its electron configuration is [Xe] 4f14 5d10 6s2 6p3. Bismuth Bohr ModelThe bismuth atom has a radius of 156 pm and a Van der Waals radius of 207 pm. In its elemental form, bismuth is a silvery white brittle metal. Bismuth is the most diamagnetic of all metals and, with the exception of mercury, its thermal conductivity is lower than any other metal. Elemental BismuthBismuth has a high electrical resistance, and has the highest Hall Effect of any metal (i.e., greatest increase in electrical resistance when placed in a magnetic field). Bismuth is found in bismuthinite and bismite. It is also produced as a byproduct of lead, copper, tin, molybdenum and tungsten extraction. Bismuth was first discovered by Early Man. The name Bismuth originates from the German word 'wissmuth,' meaning white mass.

Related Forms & Applications