Aluminum(III) Trifluoroacetylacetonate

CAS #:

Linear Formula:


MDL Number:


EC No.:



Aluminum(III) Trifluoroacetylacetonate
Pricing > SDS > Data Sheet >

Aluminum(III) Trifluoroacetylacetonate Properties (Theoretical)

Compound Formula C15H12AlF9O6
Molecular Weight 486.22
Appearance White to pale pink powder or crystals
Melting Point 119-122 °C
Boiling Point N/A
Density N/A
Solubility in H2O N/A
Exact Mass 486.030555 g/mol
Monoisotopic Mass 486.030555 g/mol

Aluminum(III) Trifluoroacetylacetonate Health & Safety Information

Signal Word Warning
Hazard Statements H315-H319
Hazard Codes Xi
Precautionary Statements P264-P280-P302+P352+P332+P313+P362+P364-P305+P351+P338+P337+P313
Flash Point N/A
RTECS Number N/A
Transport Information NONH for all modes of transport
GHS Pictograms

About Aluminum(III) Trifluoroacetylacetonate

Aluminum(III) Trifluoroacetylacetonate is one of numerous organometallic compounds manufactured by American Elements under the trade name AE Organometallics™. Organometallics are useful reagents, catalysts, and precursor materials with applications in thin film deposition, industrial chemistry, pharmaceuticals, LED manufacturing, and others. American Elements supplies organometallic compounds in most volumes including bulk quantities and also can produce materials to customer specifications. Most materials can be produced in high and ultra high purity forms (99%, 99.9%, 99.99%, 99.999%, and higher) and to many standard grades when applicable including Mil Spec (military grade), ACS, Reagent and Technical Grades, Pharmaceutical Grades, Optical, Semiconductor, and Electronics Grades. Please request a quote above for more information on pricing and lead time.

Aluminum(III) Trifluoroacetylacetonate Synonyms

Tris(trifluoro-2,4-pentanedionato)aluminum(III), Aluminum Trifluoro-acetylacetonate, Trifluoroacetylacetonato Aluminum(III) Salt

Chemical Identifiers

Linear Formula (C5H4F3O2)3Al
MDL Number MFCD00042062
EC No. 672-754-4
Pubchem CID 44717172
IUPAC Name aluminum; (E)-1,1,1-trifluoro-4-oxopent-2-en-2-olate
SMILES CC(=O)C=C(C(F)(F)F)[O-].CC(=O)C=C(C(F)(F)F)[O-].CC(=O)C=C(C(F)(F)F)[O-].[Al+3]
InchI Identifier InChI=1S/3C5H5F3O2.Al/c3*1-3(9)2-4(10)5(6,7)8;/h3*2,10H,1H3;/q;;;+3/p-3/b3*4-2+;

Packaging Specifications

Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Safety Data Sheet (SDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes, and 36,000 lb. tanker trucks.

Related Elements


See more Aluminum products. Aluminum (or Aluminium) (atomic symbol: Al, atomic number: 13) is a Block P, Group 13, Period 3 element with an atomic weight of 26.9815386. It is the third most abundant element in the earth's crust and the most abundant metallic element. Aluminum Bohr Model Aluminum's name is derived from alumina, the mineral from which Sir Humphrey Davy attempted to refine it from in 1812. Aluminum was first predicted by Antoine Lavoisier 1787 and first isolated by Hans Christian Øersted in 1825. Aluminum is a silvery gray metal that possesses many desirable characteristics. It is light, nonmagnetic and non-sparking. It stands second among metals in the scale of malleability, and sixth in ductility. It is extensively used in many industrial applications where a strong, light, easily constructed material is needed. Elemental AluminumAlthough it has only 60% of the electrical conductivity of copper, it is used in electrical transmission lines because of its light weight. Pure aluminum is soft and lacks strength, but alloyed with small amounts of copper, magnesium, silicon, manganese, or other elements, it imparts a variety of useful properties.


Fluorine is a Block P, Group 17, Period 2 element. Its electron configuration is [He]2s22p5. The fluorine atom has a covalent radius of 64 pm and its Van der Waals radius is 135 pm. In its elemental form, CAS 7782-41-4, fluorine gas has a pale yellow appearance. Fluorine was discovered by André-Marie Ampère in 1810. It was first isolated by Henri Moissan in 1886.


June 17, 2024
Los Angeles, CA
Each business day American Elements' scientists & engineers post their choice for the most exciting materials science news of the day
Flinders University nanotechnology researchers produce gold nanoparticles (and hydrogen) in water without toxic chemicals

Flinders University nanotechnology researchers produce gold nanoparticles (and hydrogen) in water without toxic chemicals