Aluminum Sulfide

CAS #

Al2S3

Request a Quote

Product Code Product Request Quote
AL-S-05-I (5N) 99.999% Aluminum Sulfide Ingot Request
AL-S-05-L (5N) 99.999% Aluminum Sulfide Lump Request
AL-S-05-P (5N) 99.999% Aluminum Sulfide Powder Request
AL-S-05-ST (5N) 99.999% Aluminum Sulfide Sputtering Target Request
AL-S-05-WSX (5N) 99.999% Aluminum Sulfide Wafer Request

About

Aluminum Sulfide is a moderately water and acid soluble Aluminum source for uses compatible with sulfates. Sulfate compounds are salts or esters of sulfuric acid formed by replacing one or both of the hydrogens with a metal. Most metal sulfate compounds are readily soluble in water for uses such as water treatment, unlike fluorides and oxides which tend to be insoluble. Organometallic forms are soluble in organic solutions and sometimes in both aqueous and organic solutions. Metallic ions can also be dispersed utilizing suspended or coated nanoparticles and deposited utilizing sputtering targets and evaporation materials for uses such as solar energy materials and fuel cells. Aluminum Sulfide is generally immediately available in most volumes. Ultra high purity and high purity compositions improve both optical quality and usefulness as scientific standards. Nanoscale elemental powders and suspensions, as alternative high surface area forms, may be considered. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement.

Synonyms

Aluminum sulfide (Al2S3), dialuminum sulfur(-2) dihydride anion, sulfanylidene-sulfanylidenealumanylsulfanyl-alumane, Dialuminium trisulphide, thioxo-(thioxoalumanylthio)alumane, sulfanylidene-sulfanylidenealumanylsulfanylalumane, aluminum sulfide (2:3), aluminum sesquisulfide

Chemical Identifiers

Formula Al2S3
CAS 1302-81-4
Pubchem CID 159369
MDL MFCD00014162
EC No. 215-109-0
IUPAC Name dialuminum trisulfide
Beilstein Registry No. N/A
SMILES [Al+3].[Al+3].[S-2].[S-2].[S-2]
InchI Identifier InChI=1S/2Al.3S/q2*+3;3*-2
InchI Key COOGPNLGKIHLSK-UHFFFAOYSA-N

Properties

Compound Formula Al2S3
Molecular Weight 150.16
Appearance gray solid
Melting Point 1,100° C (2,012° F)
Boiling Point 1,500° C (2,732° F)
Density 2.32 g/cm3
Exact Mass 149.879289
Monoisotopic Mass 149.879288 Da

Health & Safety Info  |  MSDS / SDS

Signal Word N/A
Hazard Statements N/A
Hazard Codes N/A
Risk Codes N/A
Safety Statements N/A
Transport Information N/A
Globally Harmonized System of Classification and Labelling (GHS) N/A
MSDS / SDS

Packaging Specifications

Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.

Related Products

AlSee more Aluminum products. Aluminum (or Aluminum) (atomic symbol: Al, atomic number: 13) is a Block P, Group 13, Period 3 element with an atomic weight of 26.9815386. It is the third most abundant element in the earth's crust and the most abundant metallic element. Aluminum Bohr Model Aluminum's name is derived from alumina, the mineral from which Sir Humphrey Davy attempted to refine it from in 1812. It wasn't until 1825 that Aluminum was first isolated by Hans Christian Oersted. Aluminum is a silvery gray metal that possesses many desirable characteristics. It is light, nonmagnetic and non-sparking. It stands second among metals in the scale of malleability, and sixth in ductility. It is extensively used in many industrial applications where a strong, light, easily constructed material is needed. Elemental AluminumAlthough it has only 60% of the electrical conductivity of copper, it is used in electrical transmission lines because of its light weight. Pure aluminum is soft and lacks strength, but alloyed with small amounts of copper, magnesium, silicon, manganese, or other elements it imparts a variety of useful properties. Aluminum was first predicted by Antoine Lavoisierin 1787 and first isolated by Friedrich Wöhler in 1827.

SSee more Sulfur products. Sulfur (or Sulphur) (atomic symbol: S, atomic number: 16) is a Block P, Group 16, Period 3 element with an atomic radius of 32.066. The number of electrons in each of Sulfur's shells is 2, 8, 6 and its electron configuration is [Ne] 3s2 3p4. In its elemental form, sulfur has a light yellow appearance. The sulfur atom has a covalent radius of 105 pm and a Van der Waals radius of 180 pm. In nature, sulfur can be found in hot springs, meteorites, volcanoes, and as galena, gypsum, and epsom salts. Sulfur has been known since ancient times but was not accepted as an element until 1777, when Antoine Lavoisier helped to convince the scientific community that it was an element and not a compound.

Research

Recent Research & Development for Sulfur

  • Induction and repair of DNA cross-links induced by sulfur mustard in the A-549 cell line followed by a comet assay. Jost P, Svobodova H, Stetina R. Chem Biol Interact. 2015 May 15
  • Thiol activated prodrugs of sulfur dioxide (SO2) as MRSA inhibitors. Pardeshi KA, Malwal SR, Banerjee A, Lahiri S, Rangarajan R, Chakrapani H. Bioorg Med Chem Lett. 2015 Apr 23.
  • A simple approach to the synthesis of Cu1.8S dendrites with thiamine hydrochloride as a sulfur source and structure-directing agent. Yan X, Li S, Pan YX, Yang Z, Liu X. Beilstein J Nanotechnol. 2015 Apr 1
  • Enabling Prominent High-Rate and Cycle Performances in One Lithium-Sulfur Battery: Designing Permselective Gateways for Li+ Transportation in Holey-CNT/S Cathodes. Zhou Y, Zhou C, Li Q, Yan C, Han B, Xia K, Gao Q, Wu J. Adv Mater. 2015 May 20.
  • Nanospace-Confinement Copolymerization Strategy for Encapsulating Polymeric Sulfur into Porous Carbon for Lithium-Sulfur Batteries. Ding B, Chang Z, Xu G, Nie P, Wang J, Pan J, Dou H, Zhang X. ACS Appl Mater Interfaces. 2015 May 22.
  • Hydrophilicity-controlled ordered mesoporous carbon for lithium-sulfur batteries. Bae S, Jin X, Park GO, Kim JM. J Nanosci Nanotechnol. 2014 Dec
  • Vertically Aligned Sulfur-Graphene Nanowalls on Substrates for Ultrafast Lithium-Sulfur Batteries. Li B, Li S, Liu J, Wang B, Yang S. Nano Lett. 2015 Apr 10. : Nano Lett
  • Dominance of sulfur-fueled iron oxide reduction in low-sulfate freshwater sediments. Hansel CM, Lentini CJ, Tang Y, Johnston DT, Wankel SD, Jardine PM. ISME J. 2015 Apr 14.: ISME J
  • Interaction between Nitrogen and Sulfur in Co-Doped Graphene and Synergetic Effect in Supercapacitor. Wang T, Wang LX, Wu DL, Xia W, Jia DZ. Sci Rep. 2015 Apr 16: Sci Rep
  • Protic-Salt-Derived Nitrogen/Sulfur-Codoped Mesoporous Carbon for the Oxygen Reduction Reaction and Supercapacitors. Zhang S, Ikoma A, Ueno K, Chen Z, Dokko K, Watanabe M. ChemSusChem. 2015 Apr 8.: ChemSusChem
  • Encapsulation of S/SWNT with PANI Web for Enhanced Rate and Cycle Performance in Lithium Sulfur Batteries. Kim JH, Fu K, Choi J, Kil K, Kim J, Han X, Hu L, Paik U. Sci Rep. 2015 Mar 10

Recent Research & Development for Aluminum

  • Condensate Microdrop Self-Propelling Aluminum Surfaces Based on Controllable Fabrication of Alumina Rod -Capped Nanopore Structures. Zhao Y, Luo Y, Li J, Yin F, Zhu J, Gao X. ACS Appl Mater Interfaces. 2015 May 18.
  • Helical growth of aluminum nitride: new insights into its growth habit from nanostructures to single crystals. Zhang XH, Shao RW, Jin L, Wang JY, Zheng K, Zhao CL, Han JC, Chen B, Sekiguchi T, Zhang Z, Zou J, Song B. Sci Rep. 2015 May 15
  • Hardness and wear resistance of carbon nanotube reinforced aluminum-copper matrix composites. Nam DH, Kim JH, Cha SI, Jung SI, Lee JK, Park HM, Park HD, Hong H. J Nanosci Nanotechnol. 2014 Dec
  • Co-Ni alloy nanowires prepared by anodic aluminum oxide template via electrochemical deposition. Kwag YG, Ha JK, Kim HS, Cho HJ, Cho KK. J Nanosci Nanotechnol. 2014 Dec
  • Suspended 2-D photonic crystal aluminum nitride membrane reflector. Ho CP, Pitchappa P, Soon BW, Lee C. Opt Express. 2015 Apr 20
  • A molecular beacon biosensor based on the nanostructured aluminum oxide surface. Che X, He Y, Yin H, Que L. Biosens Bioelectron. 2015 May 9
  • Efficacy and safety of aluminum chloride in controlling external hemorrhage: an animal model study. Nouri S, Sharif MR, Panahi Y, Ghanei M, Jamali B. Iran Red Crescent Med J. 2015 Mar 20
  • Quaternary polymethacrylate-magnesium aluminum silicate films: Water uptake kinetics and film permeability. Rongthong T, Sungthongjeen S, Siepmann F, Siepmann J, Pongjanyakul T. Int J Pharm. 2015 May 21.
  • Coagulation behavior and floc properties of compound bioflocculant-polyaluminum chloride dual-coagulants and polymeric aluminum in low temperature surface water treatment. Huang X, Sun S, Gao B, Yue Q, Wang Y, Li Q. J Environ Sci (China). 2015 Apr 1: J Environ Sci (China)
  • Tannoid principles of Emblica officinalis renovate cognitive deficits and attenuate amyloid pathologies against aluminum chloride induced rat model of Alzheimer's disease. Justin Thenmozhi A, Dhivyabharathi M, William Raja TR, Manivasagam T, Mohamed Essa M. Nutr Neurosci. 2015 Apr 4. : Nutr Neurosci

Recent Research & Development for Sulfides

  • Development of the Transferable Potentials for Phase Equilibria Model for Hydrogen Sulfide. Shah MS, Tsapatsis M, Siepmann JI. J Phys Chem B. 2015 May 18.
  • 8-Mercapto-Cyclic GMP Mediates Hydrogen Sulfide-Induced Stomatal Closure in Arabidopsis. Honda K, Yamada N, Yoshida R, Ihara H, Sawa T, Akaike T, Iwai S. Plant Cell Physiol. 2015 May 14.
  • Microbial diversity and the implications of sulfide levels in an anaerobic reactor used to remove an anionic surfactant from laundry wastewater. Delforno TP, Moura AG, Okada DY, Sakamoto IK, Varesche MB. Bioresour Technol. 2015 May 20
  • A tetraphenylimidazole-based fluorescent probe for the detection of hydrogen sulfide and its application in living cells. Gu B, Mi N, Zhang Y, Yin P, Li H, Yao S. Anal Chim Acta. 2015 Jun 16
  • Hydrogen Sulfide-Based Anti-Inflammatory and Chemopreventive Therapies: An Experimental Approach. Flannigan KL, Wallace JL. Curr Pharm Des. 2015 May 13.
  • Formation of Copper Zinc Tin Sulfide Thin Films from Colloidal Nanocrystal Dispersions via Aerosol-Jet Printing and Compaction. Williams BA, Mahajan A, Smeaton MA, Holgate CS, Aydil ES, Francis LF. ACS Appl Mater Interfaces. 2015 May 19.
  • A highly efficient flexible dye-sensitized solar cell based on nickel sulfide/platinum/titanium counter electrode. Yue G, Ma X, Zhang W, Li F, Wu J, Li G. Nanoscale Res Lett. 2015 Jan 10
  • Facile assembly of oppositely charged silver sulfide nanoparticles into photoluminescent mesoporous nanospheres. Tan L, Liu S, Yang Q, Shen YM. Langmuir. 2015 Mar 15.
  • Cadmium sulfide quantum dots induce oxydative-stress and behavioural impairments in the marine clam Scrobicularia plana. Buffet PE, Zalouk-Vergnoux A, Poirier L, Lopes C, Risso-de Faverney C, Guibbolini M, Gilliland D, Perrein-Ettajani H, Valsami-Jones E, Mouneyrac C. Environ Toxicol Chem. 2015 Mar 13.
  • Hexametaphosphate-Capped Silica Mesoporous Nanoparticles Containing CuII Complexes for the Selective and Sensitive Optical Detection of Hydrogen Sulfide in Water. El Sayed S, Milani M, Licchelli M, Martínez-Máñez R, Sancenón F. Chemistry. 2015 Mar 10.

Free Test Sample Program

We recognize many of our customers are purchasing small quantities directly online as trial samples in anticipation of placing a larger future order or multiple orders as a raw material for production. Since our primary business is the production of industrial quantities and/or highly consistent batches which can be used for commercial production and purchased repeatedly in smaller quantity, American Elements offers trial samples at no charge on the following basis. Within 6 months of purchasing materials directly online from us, you have the option to refer back to that order and advise that it is the intention of your company, institution or lab to either purchase a larger quantity, purchase the material in regular intervals or purchase more on some other basis.

We will then evaluate your future needs and assuming the quantity or number of future purchases qualify, we will fully credit your purchase price with the next order. Because of the many variables in the quantity and number of orders you may place, it is impossible to evaluate whether your future order(s) will qualify for this program prior to your placing your next order. Please know American Elements strongly desires to make this free sample program available to you and will make every effort to do so once your next order is placed.