Amorphous boron-doped sodium titanates hydrates: Efficient and reusable adsorbents for the removal of Pb(2+) from water.

Title Amorphous boron-doped sodium titanates hydrates: Efficient and reusable adsorbents for the removal of Pb(2+) from water.
Authors L. di Bitonto; A. Volpe; M. Pagano; G. Bagnuolo; G. Mascolo; V. La Parola; P. Di Leo; C. Pastore
Journal J Hazard Mater
DOI 10.1016/j.jhazmat.2016.10.046
Abstract

Amorphous titanium hydroxide and boron-doped (B-doped) sodium titanates hydrates were synthetized and used as adsorbents for the removal of Pb(2+) from water. The use of sodium borohydride (NaBH4) and titanium(IV) isopropoxide (TTIP) as precursors permits a very easy synthesis of B-doped adsorbents at 298K. The new adsorbent materials were first chemically characterized (XRD, XPS, SEM, DRIFT and elemental analysis) and then tested in Pb(2+) adsorption batch experiments, in order to define kinetics and equilibrium studies. The nature of interaction between such sorbent materials and Pb(2+) was also well defined: besides a pure adsorption due to hydroxyl interaction functionalities, there is also an ionic exchange between Pb(2+) and sodium ions even working at pH 4.4. Langmuir model presented the best fitting with a maximum adsorption capacity up to 385mg/g. The effect of solution pH and common ions (i.e. Na(+), Ca(2+) and Mg(2+)) onto Pb(2+) sorption were also investigated. Finally, recovery was positively conducted using EDTA. Very efficient adsorption (>99.9%) was verified even using tap water spiked with traces of Pb(2+) (50ppb).

Citation L. di Bitonto; A. Volpe; M. Pagano; G. Bagnuolo; G. Mascolo; V. La Parola; P. Di Leo; C. Pastore.Amorphous boron-doped sodium titanates hydrates: Efficient and reusable adsorbents for the removal of Pb(2+) from water.. J Hazard Mater. 2017;324(Pt B):168177. doi:10.1016/j.jhazmat.2016.10.046

Related Elements

Boron

See more Boron products. Boron Bohr ModelBoron (atomic symbol: B, atomic number: 5) is a Block P, Group 13, Period 2 element with an atomic weight of 10.81. The number of electrons in each of boron's shells is 2, 3 and its electron configuration is [He] 2s2 2p1. The boron atom has a radius of 90 pm and a Van der Waals radius of 192 pm. Boron was discovered by Joseph Louis Gay-Lussac and Louis Jacques Thénard in 1808 and was first isolated by Humphry Davy later that year. Boron is classified as a metalloid is not found naturally on earth. Elemental BoronAlong with carbon and nitrogen, boron is one of the few elements in the periodic table known to form stable compounds featuring triple bonds. Boron has an energy band gap of 1.50 to 1.56 eV, which is higher than that of either silicon or germanium. The name Boron originates from a combination of carbon and the Arabic word buraqu meaning borax.

Sodium

Sodium Bohr ModelSee more Sodium products. Sodium (atomic symbol: Na, atomic number: 11) is a Block D, Group 5, Period 4 element with an atomic weight of 22.989769. The number of electrons in each of Sodium's shells is [2, 8, 1] and its electron configuration is [Ne] 3s1. The sodium atom has a radius of 185.8 pm and a Van der Waals radius of 227 pm. Sodium was discovered and first isolated by Sir Humphrey Davy in 1807. In its elemental form, sodium has a silvery-white metallic appearance. It is the sixth most abundant element, making up 2.6 % of the earth's crust. Sodium does not occur in nature as a free element and must be extracted from its compounds (e.g., feldspars, sodalite, and rock salt). The name Sodium is thought to come from the Arabic word suda, meaning "headache" (due to sodium carbonate's headache-alleviating properties), and its elemental symbol Na comes from natrium, its Latin name.

Titanium

See more Titanium products. Titanium (atomic symbol: Ti, atomic number: 22) is a Block D, Group 4, Period 4 element with an atomic weight of 47.867. The number of electrons in each of Titanium's shells is [2, 8, 10, 2] and its electron configuration is [Ar] 3d2 4s2. Titanium Bohr ModelThe titanium atom has a radius of 147 pm and a Van der Waals radius of 187 pm. Titanium was discovered by William Gregor in 1791 and first isolated by Jöns Jakob Berzelius in 1825. In its elemental form, titanium has a silvery grey-white metallic appearance. Titanium's properties are chemically and physically similar to zirconium, both of which have the same number of valence electrons and are in the same group in the periodic table. Elemental TitaniumTitanium has five naturally occurring isotopes: 46Ti through 50Ti, with 48Ti being the most abundant (73.8%). Titanium is found in igneous rocks and the sediments derived from them. It is named after the word Titanos, which is Greek for Titans.

Related Forms & Applications