Barium Lead Zirconium Titanate

PBZT / BPZT

Linear Formula:

Pb/Ba/Zr/Ti/O

MDL Number:

N/A

EC No.:

N/A

ORDER

PRODUCT Product Code ORDER SAFETY DATA TECHNICAL DATA
(2N) 99% Barium Lead Zirconium Titanate
BAPB-ZRTAT-02
Pricing > SDS > Data Sheet >
(3N) 99.9% Barium Lead Zirconium Titanate
BAPB-ZRTAT-03
Pricing > SDS > Data Sheet >
(4N) 99.99% Barium Lead Zirconium Titanate
BAPB-ZRTAT-04
Pricing > SDS > Data Sheet >
(5N) 99.999% Barium Lead Zirconium Titanate
BAPB-ZRTAT-05
Pricing > SDS > Data Sheet >

Barium Lead Zirconium Titanate Properties (Theoretical)

Compound Formula PbBaZrTiO3
Appearance Solid in various forms (powder, plate, sputtering target)
Melting Point N/A
Boiling Point N/A
Density N/A
Solubility in H2O N/A

Barium Lead Zirconium Titanate Health & Safety Information

Signal Word N/A
Hazard Statements N/A
Hazard Codes N/A
RTECS Number N/A
Transport Information N/A
MSDS / SDS

About Barium Lead Zirconium Titanate

Barium Lead Zirconium Titanate (also known as PBZT or BPZT) is a ferroelectric and piezoelectric ceramic material with high dielectric constant and temperature stability. Please request a quote above to receive pricing information based on your specifications.

Barium Lead Zirconium Titanate Synonyms

Barium lead zirconate titanate, Barium-doped lead zirconium titanate (PZT), Lead-substituted barium zirconium titanate (BZT), Barium lead zirconium titanium oxide, Barium zirconate‐lead titanate solid solution, PBZT, BPZT, Ba0.8Pb0.2Ti0.94Zr0.06O3

Chemical Identifiers

Linear Formula Pb/Ba/Zr/Ti/O
MDL Number N/A
EC No. N/A

Packaging Specifications

Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Safety Data Sheet (SDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes, and 36,000 lb. tanker trucks.

Related Elements

Barium

See more Barium products. Barium (atomic symbol: Ba, atomic number: 56) is a Block S, Group 2, Period 6 element with an atomic weight of 137.27. The number of electrons in each of barium's shells is [2, 8, 18, 18, 8, 2] and its electron configuration is [Xe] 6s2. Barium Bohr ModelBarium is a member of the alkaline-earth metals. The barium atom has a radius of 222 pm and a Van der Waals radius of 268 pm. Barium was discovered by Carl Wilhelm Scheele in 1772 and first isolated by Humphry Davy in 1808. Elemental BariumIn its elemental form, barium is a soft, silvery-gray metal. Industrial applications for barium include acting as a "getter," or unwanted gas remover, for vacuum tubes, and as an additive to steel and cast iron. Barium is also alloyed with silicon and aluminum in load-bearing alloys. The main commercial source of barium is the mineral barite (BaSO4); it does not occur naturally as a free element . The name barium is derived from the Greek word "barys," meaning heavy.

Lead

Lead Bohr ModelSee more Lead products. Lead (atomic symbol: Pb, atomic number: 82) is a Block P, Group 14, Period 6 element with an atomic radius of 207.2. The number of electrons in each of Lead's shells is [2, 8, 18, 32, 18, 4] and its electron configuration is [Xe] 4f14 5d10 6s2 6p2. The lead atom has a radius of 175 pm and a Van der Waals radius of 202 pm. In its elemental form, lead has a metallic gray appearance. Lead occurs naturally as a mixture of four stable isotopes: 204Pb (1.48%), 206Pb (23.6%), 207Pb (22.6%), and 208Pb (52.3%). Elemental LeadLead is obtained mainly from galena (PbS) by a roasting process. Anglesite, cerussite, and minim are other common lead containing minerals. Lead does occur as a free element in nature, but it is rare. It is a dense, soft metal that is very resistant to corrosion and poorly conductive compared to other metals. Its density and low melting point make it useful in applications such as electrolysis and industrial materials.

Titanium

See more Titanium products. Titanium (atomic symbol: Ti, atomic number: 22) is a Block D, Group 4, Period 4 element with an atomic weight of 47.867. The number of electrons in each of Titanium's shells is [2, 8, 10, 2] and its electron configuration is [Ar] 3d2 4s2. Titanium Bohr ModelThe titanium atom has a radius of 147 pm and a Van der Waals radius of 187 pm. Titanium was discovered by William Gregor in 1791 and first isolated by Jöns Jakob Berzelius in 1825. In its elemental form, titanium has a silvery grey-white metallic appearance. Titanium's properties are chemically and physically similar to zirconium, both of which have the same number of valence electrons and are in the same group in the periodic table. Elemental TitaniumTitanium has five naturally occurring isotopes: 46Ti through 50Ti, with 48Ti being the most abundant (73.8%). Titanium is found in igneous rocks and the sediments derived from them. It is named after the word Titanos, which is Greek for Titans.

Zirconium

See more Zirconium products. Zirconium (atomic symbol: Zr, atomic number: 40) is a Block D, Group 4, Period 5 element with an atomic weight of 91.224. Zirconium Bohr ModelThe number of electrons in each of Zirconium's shells is 2, 8, 18, 10, 2 and its electron configuration is [Kr]4d2 5s2. The zirconium atom has a radius of 160 pm and a Van der Waals radius of 186 pm. Zirconium was discovered by Martin Heinrich Klaproth in 1789 and first isolated by Jöns Jakob Berzelius in 1824. In its elemental form, zirconium has a silvery white appearance that is similar to titanium. Zirconium's principal mineral is zircon (zirconium silicate). Elemental ZirconiumZirconium is commercially produced as a byproduct of titanium and tin mining and has many applications as a opacifier and a refractory material. It is not found in nature as a free element. The name of zirconium comes from the mineral zircon, the most important source of zirconium, and from the Persian wordzargun, meaning gold-like.

TODAY'S TOP DISCOVERY!

December 04, 2024
Los Angeles, CA
Each business day American Elements' scientists & engineers post their choice for the most exciting materials science news of the day
Physics student builds improvised polarimeter using simple circuitry, polarizing film, and LEGO toy bricks

Physics student builds improvised polarimeter using simple circuitry, polarizing film, and LEGO toy bricks