Skip to main content

Beryllium Aluminosilicate

CAS #: 1302-52-9
Linear Formula:
Be3Al2(SiO3)6
MDL Number
MFCD00049838
EC No.:
215-101-7

ORDER

Product Product Code ORDER SAFETY DATA Technical data
Beryllium Aluminosilicate BE-ALSIAT-02-P SDS > Data Sheet >
WHOLESALE/SKU 0000-742-{{nid}}

Beryllium Aluminosilicate Properties (Theoretical)

Compound Formula Al2Be3O18Si6
Molecular Weight 537.5
Appearance Green powder
Melting Point 1410 °C
Boiling Point N/A
Density 2.66 g/cm3
Solubility in H2O N/A
Exact Mass 536.769646 g/mol
Monoisotopic Mass 536.769646 g/mol
Charge 0

Beryllium Aluminosilicate Health & Safety Information

Signal Word Warning
Hazard Statements H311-H315-H320-H331-H335
Hazard Codes N/A
Risk Codes N/A
Safety Statements N/A
Transport Information UN1566 6.1/PG III

About Beryllium Aluminosilicate

Beryllium Aluminosilicate is generally immediately available in most volumes. High purity, submicron and nanopowder forms may be considered. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement.

Synonyms

Beryllium aluminum silicate, Beryllium aluminum silicon oxide, Beryl ore, Natural beryl, Al2Be3(SiO3)6, Emerald

Chemical Identifiers

Linear Formula Be3Al2(SiO3)6
Pubchem CID 14767
MDL Number MFCD00049838
EC No. 215-101-7
IUPAC Name dialuminum; triberyllium; dioxido(oxo)silane
Beilstein/Reaxys No.
SMILES [Be+2].[Be+2].[Be+2].[O-][Si](=O)[O-].[O-][Si](=O)[O-].[O-][Si](=O)[O-].[O-][Si](=O)[O-].[O-][Si](=O)[O-].[O-][Si](=O)[O-].[Al+3].[Al+3]
InchI Identifier InChI=1S/2Al.3Be.6O3Si/c;;;;;6*1-4(2)3/q2*+3;3*+2;6*-2
InchI Key NJJFVOQXYCEZLO-UHFFFAOYSA-N
Chemical Formula
Molecular Weight
Standard InchI
Appearance
Melting Point
Boiling Point
Density

Packaging Specifications

Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Safety Data Sheet (SDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes, and 36,000 lb. tanker trucks.

Related Elements

See more Aluminum products. Aluminum (or Aluminium) (atomic symbol: Al, atomic number: 13) is a Block P, Group 13, Period 3 element with an atomic weight of 26.9815386. It is the third most abundant element in the earth's crust and the most abundant metallic element. Aluminum Bohr Model Aluminum's name is derived from alumina, the mineral from which Sir Humphrey Davy attempted to refine it from in 1812. Aluminum was first predicted by Antoine Lavoisier 1787 and first isolated by Hans Christian Øersted in 1825. Aluminum is a silvery gray metal that possesses many desirable characteristics. It is light, nonmagnetic and non-sparking. It stands second among metals in the scale of malleability, and sixth in ductility. It is extensively used in many industrial applications where a strong, light, easily constructed material is needed. Elemental AluminumAlthough it has only 60% of the electrical conductivity of copper, it is used in electrical transmission lines because of its light weight. Pure aluminum is soft and lacks strength, but alloyed with small amounts of copper, magnesium, silicon, manganese, or other elements, it imparts a variety of useful properties.

See more Beryllium products. Beryllium (atomic symbol: Be, atomic number: 4) is a Block S, Group 2, Period 2 element with an atomic weight of 9.012182. Beryllium Bohr ModelThe number of electrons in each of Beryllium's shells is [2, 2] and its electron configuration is [He] 2s2. The beryllium atom has a radius of 112 pm and a Van der Waals radius of 153 pm. Beryllium is a relatively rare element in the earth's crust; it can be found in minerals such as bertrandite, chrysoberyl, phenakite, and beryl, its most common source for commercial production. Beryllium was discovered by Louis Nicolas Vauquelin in 1797 and first isolated by Friedrich Wöhler and Antoine Bussy in 1828. Elemental BerylliumIn its elemental form, beryllium has a gray metallic appearance. It is a soft metal that is both strong and brittle; its low density and high thermal conductivity make it useful for aerospace and military applications. It is also frequently used in X-ray equipment and particle physics. The origin of the name Beryllium comes from the Greek word "beryllos," meaning beryl.

See more Silicon products. Silicon (atomic symbol: Si, atomic number: 14) is a Block P, Group 14, Period 3 element with an atomic weight of 28.085. Silicon Bohr MoleculeThe number of electrons in each of Silicon's shells is 2, 8, 4 and its electron configuration is [Ne] 3s2 3p2. The silicon atom has a radius of 111 pm and a Van der Waals radius of 210 pm. Silicon was discovered and first isolated by Jöns Jacob Berzelius in 1823. Silicon makes up 25.7% of the earth's crust, by weight, and is the second most abundant element, exceeded only by oxygen. The metalloid is rarely found in pure crystal form and is usually produced from the iron-silicon alloy ferrosilicon. Elemental SiliconSilica (or silicon dioxide), as sand, is a principal ingredient of glass, one of the most inexpensive of materials with excellent mechanical, optical, thermal, and electrical properties. Ultra high purity silicon can be doped with boron, gallium, phosphorus, or arsenic to produce silicon for use in transistors, solar cells, rectifiers, and other solid-state devices which are used extensively in the electronics industry.The name Silicon originates from the Latin word silex which means flint or hard stone.