Bismuth Ferrite

BiFeO3

Request a Quote

Product Code Product Request Quote
BI-FEIT-05-CK (5N) 99.999% Bismuth Ferrite Chunk Request
BI-FEIT-05-I (5N) 99.999% Bismuth Ferrite Ingot Request
BI-FEIT-05-L (5N) 99.999% Bismuth Ferrite Lump Request
BI-FEIT-05-P (5N) 99.999% Bismuth Ferrite Powder Request
BI-FEIT-05-ST (5N) 99.999% Bismuth Ferrite Sputtering Target Request

About

Ferrite StructureBismuth Ferrite is generally immediately available in most volumes. High purity, submicron and nanopowder forms may be considered. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement.

Synonyms

BFO, bismuth iron oxide

Chemical Identifiers

Formula BiFeO3
CAS N/A
MDL N/A
EC No. N/A

Properties

Melting Point N/A
Boiling Point N/A
Density N/A

Health & Safety Info  |  MSDS / SDS

Signal Word N/A
Hazard Statements N/A
Hazard Codes N/A
Risk Codes N/A
Safety Statements N/A
Transport Information N/A
MSDS / SDS

Packaging Specifications

Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.

Related Products

BiSee more Bismuth products. Bismuth (atomic symbol: Bi, atomic number: 83) is a Block P, Group 15, Period 6 element with an atomic radius of 208.98040. The number of electrons in each of Bismuth's shells is 2, 8, 18, 32, 18, 5 and its electron configuration is [Xe] 4f14 5d10 6s2 6p3. Bismuth Bohr ModelThe bismuth atom has a radius of 156 pm and a Van der Waals radius of 207 pm. In its elemental form, bismuth is a silvery white brittle metal. Bismuth is the most diamagnetic of all metals and, with the exception of mercury, its thermal conductivity is lower than any other metal. Elemental BismuthBismuth has a high electrical resistance, and has the highest Hall Effect of any metal (i.e., greatest increase in electrical resistance when placed in a magnetic field). Bismuth is found in bismuthinite and bismite It is also produced as a byproduct of lead, copper, tin, molybdenum and tungsten extraction. Bismuth was first discovered by Early Man. The name Bismuth originates from the German word 'wissmuth,' meaning white mass.

FeSee more Iron products. Iron (atomic symbol: Fe, atomic number: 26) is a Block D, Group 8, Period 4 element with an atomic weight of 55.845. The number of electrons in each of Iron's shells is 2, 8, 14, 2 and its electron configuration is [Ar] 3d6 4s2. The iron atom has a radius of 126 pm and a Van der Waals radius of 194 pm. Iron was discovered by humans before 5000 BC. In its elemental form, iron has a lustrous grayish metallic appearance. Iron is the fourth most common element in the Earth's crust and the most common element by mass forming the earth as a whole. Iron is rarely found as a free element, since it tends to oxidize easily it is usually found in minerals such as magnetite, hematite, goethite, limonite, or siderite. Though pure iron is typically soft, the addition of carbon creates the alloy known as steel, which is significantly stronger. For more information on iron, including properties, safety data, research, and American Elements' catalog of iron products, visit the Iron element page. .

Research

Recent Research & Development for Iron

  • Humic acids enhance the microbially mediated release of sedimentary ferrous iron. Chang CH, Wei CC, Lin LH, Tu TH, Liao VH. Environ Sci Pollut Res Int. 2015 May 22.
  • An update on iron acquisition by Legionella pneumophila: new pathways for siderophore uptake and ferric iron reduction. Cianciotto NP. Future Microbiol. 2015 May
  • Iron accumulation promotes TACE-mediated TNF-α secretion and neurodegeneration in a mouse model of ALS. Lee JK, Shin JH, Gwag BJ, Choi EJ. Neurobiol Dis. 2015 May 19.
  • Colorimetric detection of iron ions (III) based on the highly sensitive plasmonic response of the N-acetyl-l-cysteine-stabilized silver nanoparticles. Gao X, Lu Y, He S, Li X, Chen W. Anal Chim Acta. 2015 Jun 16
  • Superparamagnetic iron oxide as a tracer for sentinel node biopsy in breast cancer: A comparative non-inferiority study. Piñero-Madrona A, Torró-Richart JA, de León-Carrillo JM, de Castro-Parga G, Navarro-Cecilia J, Domínguez-Cunchillos F, Román-Santamaría JM, Fuster-Diana C, Pardo-García R; “Grupo de Estudios Senológicos de la Sociedad Española de Patologia Mamaria (SESPM)”. Eur J Surg Oncol. 2015 May 12.
  • Functionalized magnetic iron oxide/alginate core-shell nanoparticles for targeting hyperthermia. Liao SH, Liu CH, Bastakoti BP, Suzuki N, Chang Y, Yamauchi Y, Lin FH, Wu KC. Int J Nanomedicine. 2015 May 4
  • Characterization of the enhancement of zero valent iron on microbial azo reduction. Fang Y, Xu M, Wu WM, Chen X, Sun G, Guo J, Liu X. BMC Microbiol. 2015 Apr 10: BMC Microbiol
  • Superparamagnetic iron oxide nanoparticles for in vivo molecular and cellular imaging. Sharifi S, Seyednejad H, Laurent S, Atyabi F, Saei AA, Mahmoudi M. Contrast Media Mol Imaging. 2015 Apr 16.: Contrast Media Mol Imaging
  • Transformation of triclosan to 2,8-dichlorodibenzo-p-dioxin by iron and manganese oxides under near dry conditions. Ding J, Su M, Wu C, Lin K. Chemosphere. 2015 Apr 13: Chemosphere
  • Application of iron oxide b nanoparticles in neuronal tissue engineering. Ziv-Polat O, Margel S, Shahar A. Neural Regen Res. 2015 Feb: Neural Regen Res

Recent Research & Development for Bismuth

  • Optical pumping and readout of bismuth hyperfine states in silicon for atomic clock applications. Saeedi K, Szech M, Dluhy P, Salvail JZ, Morse KJ, Riemann H, Abrosimov NV, Nötzel N, Litvinenko KL, Murdin BN, Thewalt ML. Sci Rep. 2015 May 20
  • Antimicrobial activity of bismuth subsalicylate on Clostridium difficile, Escherichia coli O157:H7, norovirus, and other common enteric pathogens. Pitz AM, Park GW, Lee D, Boissy YL, Vinjé J. Gut Microbes. 2015 Mar 4
  • Comparative toxicities of bismuth oxybromide and titanium dioxide exposure on human skin keratinocyte cells. Gao X, Wang Y, Peng S, Yue B, Fan C, Chen W, Li X. Chemosphere. 2015 Apr 24
  • Optical properties of Lead bismuth borate glasses doped with neodymium oxide. Farouk M, Abd El-Maboud A, Ibrahim M, Ratep A, Kashif I. Spectrochim Acta A Mol Biomol Spectrosc. 2015 Apr 30
  • Novel yolk-shell structure bismuth-rich bismuth molybdate microspheres for enhanced visible light photocatalysis. Li J, Liu X, Sun Z, Sun Y, Pan L. J Colloid Interface Sci. 2015 Aug 15
  • Highly active magnetic bismuth tungstate/magnetite composite under visible light irradiation in the presence of hydrogen peroxide. Shan G, Fu Y, Chu X, Chang C, Zhu L. J Colloid Interface Sci. 2015 Apr 15
  • Trace level voltammetric determination of lead and cadmium in sediment pore water by a bismuth-oxychloride particle-multiwalled carbon nanotube composite modified glassy carbon electrode. Cerovac S, Guzsvány V, Kónya Z, Ashrafi AM, Švancara I, Ron?evi? S, Kukovecz Á, Dalmacija B, Vyt?as K. Talanta. 2015 Mar
  • Electrospun bismuth ferrite nanofibers for potential applications in ferroelectric photovoltaic devices. Fei L, Hu Y, Li X, Song R, Sun L, Huang H, Gu H, Chan HL, Wang Y. ACS Appl Mater Interfaces. 2015 Feb 18
  • An in vitro study on the cytotoxicity of bismuth oxychloride
  • Efficacy of reduced-dose regimen of a capsule containing bismuth subcitrate, metronidazole, and tetracycline given with amoxicillin and esomeprazole in the treatment of Helicobacter Pylori infection. Harb AH, El Reda ZD, Sarkis FS, Chaar HF, Sharara AI. United European Gastroenterol J. 2015 Feb

Recent Research & Development for Ferrites

  • Mesoporous bismuth ferrite with amplified magnetoelectric coupling and electric field-induced ferrimagnetism. Quickel TE, Schelhas LT, Farrell RA, Petkov N, Le VH, Tolbert SH. Nat Commun. 2015 Mar 10
  • Silica encapsulation of ferrimagnetic zinc ferrite nanocubes enabled by layer-by-layer polyelectrolyte deposition. Park J, Porter MD, Granger MC. Langmuir. 2015 Mar 24
  • Comparative cytotoxic response of nickel ferrite nanoparticles in human liver HepG2 and breast MFC-7 cancer cells. Ahamed M, Akhtar MJ, Alhadlaq HA, Khan MA, Alrokayan SA. Chemosphere. 2015 May 8
  • One-Step Fabrication of a Multifunctional Magnetic Nickel Ferrite/Multi-walled Carbon Nanotubes Nanohybrid-Modified Electrode for the Determination of Benomyl in Food. Wang Q, Yang J, Dong Y, Zhang L. J Agric Food Chem. 2015 May 20
  • Cellular uptake and biocompatibility of bismuth ferrite harmonic advanced nanoparticles. Staedler D, Passemard S, Magouroux T, Rogov A, Maguire CM, Mohamed BM, Schwung S, Rytz D, Jüstel T, Hwu S, Mugnier Y, Le Dantec R, Volkov Y, Gerber-Lemaire S, Prina-Mello A, Bonacina L, Wolf JP. Nanomedicine. 2015 May
  • Electrospun bismuth ferrite nanofibers for potential applications in ferroelectric photovoltaic devices. Fei L, Hu Y, Li X, Song R, Sun L, Huang H, Gu H, Chan HL, Wang Y. ACS Appl Mater Interfaces. 2015 Feb 18
  • Influence of Bi(3+)-doping on the magnetic and Mössbauer properties of spinel cobalt ferrite. Gore SK, Mane RS, Naushad M, Jadhav SS, Zate MK, Alothman ZA, Hui BK. Dalton Trans. 2015 Apr 14
  • Nanoscale magnetization reversal caused by electric field-induced ion migration and redistribution in cobalt ferrite thin films. Chen X, Zhu X, Xiao W, Liu G, Feng YP, Ding J, Li RW. ACS Nano. 2015 Apr 28
  • Composition and hydrophilicity control of Mn-doped ferrite (MnxFe3-xO4) nanoparticles induced by polyol differentiation. Vamvakidis K, Katsikini M, Vourlias G, Angelakeris M, Paloura EC, Dendrinou-Samara C. Dalton Trans. 2015 Mar 28
  • Barium ferrite decorated reduced graphene oxide nanocomposite for effective electromagnetic interference shielding. Verma M, Singh AP, Sambyal P, Singh BP, Dhawan SK, Choudhary V. Phys Chem Chem Phys. 2015 Jan 21: Phys Chem Chem Phys

Free Test Sample Program

We recognize many of our customers are purchasing small quantities directly online as trial samples in anticipation of placing a larger future order or multiple orders as a raw material for production. Since our primary business is the production of industrial quantities and/or highly consistent batches which can be used for commercial production and purchased repeatedly in smaller quantity, American Elements offers trial samples at no charge on the following basis. Within 6 months of purchasing materials directly online from us, you have the option to refer back to that order and advise that it is the intention of your company, institution or lab to either purchase a larger quantity, purchase the material in regular intervals or purchase more on some other basis.

We will then evaluate your future needs and assuming the quantity or number of future purchases qualify, we will fully credit your purchase price with the next order. Because of the many variables in the quantity and number of orders you may place, it is impossible to evaluate whether your future order(s) will qualify for this program prior to your placing your next order. Please know American Elements strongly desires to make this free sample program available to you and will make every effort to do so once your next order is placed.