Bronze Electrodes

Cu Sn

Request Quote

PRODUCT PRODUCT CODE REQUEST A QUOTE PRINT SAFETY DATA
(2N) 99% Bronze Electrode BRZ-M-02-EL Request Quote
(3N) 99.9% Bronze Electrode BRZ-M-03-EL Request Quote
(4N) 99.99% Bronze Electrode BRZ-M-04-EL Request Quote
(5N) 99.999% Bronze Electrode BRZ-M-05-EL Request Quote

Properties

Melting Point N/A
Boiling Point N/A
Density N/A

Health & Safety Info  |  MSDS / SDS

Signal Word N/A
Hazard Statements N/A
Hazard Codes N/A
Risk Codes N/A
Safety Statements N/A
Transport Information N/A
Globally Harmonized System of Classification and Labelling (GHS) N/A
MSDS / SDS

About

American Elements specializes in producing high purity uniform shaped Bronze Electrodes with the highest possible density and smallest possible average grain sizes for use in semiconductor, Chemical Vapor Deposition (CVD) and Physical Vapor Deposition (PVD) processes including Thermal and Electron Beam (E-Beam) Evaporation, Low Temperature Organic Evaporation, Atomic Layer Deposition (ALD), Metallic-Organic and Chemical Vapor Deposition (MOCVD). American Elements produces high purity Bronze Electrodes which can be used in chemical and physics experiments related to mass and heat conductivity or for demonstration purposes. Materials are produced using crystallization, solid state and other ultra high purification processes such as sublimation. American Elements specializes in producing custom compositions for commercial and research applications and for new proprietary technologies. American Elements casts any of the rare earth metals and most other advanced materials into rod, bar, or plate form, as well as other machined shapes and through other processes such as nanoparticles and in the form of solutions and organometallics. See safety data and research below and pricing/lead time above.

Synonyms

N/A

Chemical Identifiers

Formula Cu Sn
CAS N/A
MDL N/A
EC No. N/A

Packaging Specifications

Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Safety Data Sheet (SDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes, and 36,000 lb. tanker trucks.

Related Products & Element Information

See more Copper products. Copper Bohr Model Copper (atomic symbol: Cu, atomic number: 29) is a Block D, Group 11, Period 4 element with an atomic weight of 63.546. The number of electrons in each of copper's shells is 2, 8, 18, 1 and its electron configuration is [Ar] 3d10 4s1. The copper atom has a radius of 128 pm and a Van der Waals radius of 186 pm. Copper was first discovered by Early Man prior to 9000 BC. In its elemental form, copper has a red-orange metallic luster appearance. Of all pure metals, only silver Elemental Copperhas a higher electrical conductivity.The origin of the word copper comes from the Latin word 'cuprium' which translates as "metal of Cyprus." Cyprus, a Mediterranean island, was known as an ancient source of mined copper.

Tin Bohr ModelSee more Tin products. Tin (atomic symbol: Sn, atomic number: 50) is a Block P, Group 14, Period 5 element with an atomic weight of 118.710. The number of electrons in each of tin's shells is 2, 8, 18, 18, 4 and its electron configuration is [Kr] 4d10 5s2 5p2. The tin atom has a radius of 140.5 pm and a Van der Waals radius of 217 pm.In its elemental form, tin has a silvery-gray metallic appearance. It is malleable, ductile and highly crystalline. High Purity (99.9999%) Tin (Sn) MetalTin has nine stable isotopes and 18 unstable isotopes. Under 3.72 degrees Kelvin, Tin becomes a superconductor. Applications for tin include soldering, plating, and such alloys as pewter. The first uses of tin can be dated to the Bronze Age around 3000 BC in which tin and copper were combined to make the alloy bronze. The origin of the word tin comes from the Latin word Stannum which translates to the Anglo-Saxon word tin. For more information on tin, including properties, safety data, research, and American Elements' catalog of tin products, visit the Tin element page.

Recent Research

Intensified removal of copper from waste water using activated watermelon based biosorbent in the presence of ultrasound., Gupta, Harsh, and Gogate Parag R. , Ultrason Sonochem, 2016 May, Volume 30, p.113-22, (2016)

Utilization of reduced graphene oxide/cadmium sulfide-modified carbon cloth for visible-light-prompt photoelectrochemical sensor for copper (II) ions., Foo, C Y., Lim H N., Pandikumar A, Huang N M., and Ng Y H. , J Hazard Mater, 2016 Mar 5, Volume 304, p.400-8, (2016)

Creatinine and urea biosensors based on a novel ammonium ion-selective copper-polyaniline nano-composite., Zhybak, M, Beni V, Vagin M Y., Dempsey E, Turner A P. F., and Korpan Y , Biosens Bioelectron, 2016 Mar 15, Volume 77, p.505-11, (2016)

Layer-by-layer assembly of copper nanoparticles and manganese dioxide-multiwalled carbon nanotubes film: A new nonenzymatic electrochemical sensor for glucose., Wang, Yan, Zhang Sai, Bai Wushuang, and Zheng Jianbin , Talanta, 2016 Mar 1, Volume 149, p.211-6, (2016)

Molecular imprinting method for fabricating novel glucose sensor: Polyvinyl acetate electrode reinforced by MnO2/CuO loaded on graphene oxide nanoparticles., Farid, Mohammad Masoudi, Goudini Leila, Piri Farideh, Zamani Abbasali, and Saadati Fariba , Food Chem, 2016 Mar 1, Volume 194, p.61-7, (2016)

Nanosized spongelike Mn3O4 as an adsorbent for preconcentration by vortex assisted solid phase extraction of copper and lead in various food and herb samples., Yavuz, Emre, Tokalıoğlu Şerife, Şahan Halil, and Patat Şaban , Food Chem, 2016 Mar 1, Volume 194, p.463-9, (2016)

Ultrasound assisted dispersal of a copper nanopowder for electroless copper activation., Graves, John E., Sugden Mark, Litchfield Robert E., Hutt David A., Mason Timothy J., and Cobley Andrew J. , Ultrason Sonochem, 2016 Mar, Volume 29, p.428-38, (2016)

Formation of Bromate and Halogenated Disinfection Byproducts during Chlorination of Bromide-Containing Waters in the Presence of Dissolved Organic Matter and CuO., Liu, Chao, and Croué Jean-Philippe , Environ Sci Technol, 2016 Jan 5, Volume 50, Issue 1, p.135-44, (2016)

An investigation into the use of cuprous chloride for the removal of radioactive iodide from aqueous solutions., Liu, Yang, Gu Ping, Jia Lin, and Zhang Guanghui , J Hazard Mater, 2016 Jan 25, Volume 302, p.82-9, (2016)

Laser sintering of copper nanoparticles on top of silicon substrates., Soltani, A, B Vahed Khorramdel, Mardoukhi A, and Mäntysalo M , Nanotechnology, 2016 Jan 22, Volume 27, Issue 3, p.035203, (2016)