Cesium Lithium Lanthanum Bromide, Ce-doped

CLLB

Linear Formula:

Cs2LiLaBr6(Ce)

MDL Number:

N/A

EC No.:

N/A

ORDER

PRODUCT Product Code ORDER SAFETY DATA TECHNICAL DATA
Cesium Lithium Lanthanum Bromide, Ce-doped
CSLI-LABR-01-XTL.CED
Pricing > SDS > Data Sheet >

Cesium Lithium Lanthanum Bromide, Ce-doped Properties (Theoretical)

Compound Formula Cs2LiLaBr6:Ce
Molecular Weight 891.08 (undoped)
Appearance Transparent crystalline solid
Melting Point N/A
Boiling Point N/A
Density 4.2 g/cm3
Solubility in H2O N/A
Storage Temperature Hygroscopic; store at ambient temperatures in sealed container

Cesium Lithium Lanthanum Bromide, Ce-doped Health & Safety Information

Signal Word N/A
Hazard Statements N/A
Hazard Codes N/A
RTECS Number N/A
Transport Information N/A
MSDS / SDS

About Cesium Lithium Lanthanum Bromide, Ce-doped

Cs2LiLaBr6:Ce (CLLB) is a transparent gamma-neutron scintillation material with excellent energy resolution. American Elements manufactures CLLB in dimensions ranging from 1-2" in diameter and length. Standard and custom packaging is available. Additional technical, research and safety (SDS) information is available. Please request a quote above to receive pricing information based on your specifications.

Cesium Lithium Lanthanum Bromide, Ce-doped Synonyms

CLLB, cerium-activated Cs2LiLaBr6

Chemical Identifiers

Linear Formula Cs2LiLaBr6(Ce)
MDL Number N/A
EC No. N/A

Packaging Specifications

Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Safety Data Sheet (SDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes, and 36,000 lb. tanker trucks.

Related Elements

Bromine

See more Bromine products. Bromine (atomic symbol: Br, atomic number: 35) is a Block P, Group 17, Period 4 element. Its electron configuration is [Ar]4s23d104p5. The bromine atom has a radius of 102 pm and its Van der Waals radius is 183 pm. In its elemental form, bromine Bromine Bohr Model has a red-brown appearance. Bromine does not occur by itself in nature; it is found as colorless soluble crystalline mineral halide salts. Bromine was discovered and first isolated by Antoine Jérôme Balard and Leopold Gmelin in 1825-1826.

Cerium

See more Cerium products. Cerium (atomic symbol: Ce, atomic number: 58) is a Block F, Group 3, Period 6 element with an atomic weight of 140.116. The number of electrons in each of cerium's shells is 2, 8, 18, 19, 9, 2 and its electron configuration is [Xe]4f2 6s2. Cerium Bohr ModelThe cerium atom has a radius of 182.5 pm and a Van der Waals radius of 235 pm. In its elemental form, cerium has a silvery white appearance. Cerium is the most abundant of the rare earth metals. It is characterized chemically by having two valence states, the +3 cerous and +4 ceric states. The ceric state is the only non-trivalent rare earth ion stable in aqueous solutions. Elemental CeriumIt is therefore strongly acidic and oxidizing, in addition to being moderately toxic.The cerous state closely resembles the other trivalent rare earths. Cerium is found in the minerals allanite, bastnasite, hydroxylbastnasite, monazite, rhabdophane, synchysite and zircon. Cerium was discovered by Martin Heinrich Klaproth, Jöns Jakob Berzelius, and Wilhelm Hisinger in 1803 and first isolated by Carl Gustaf Mosander in 1839. The element was named after the asteroid Ceres, which itself was named after the Roman god of agriculture.

Cesium

See more Cesium products. Cesium (or Caesium) (atomic symbol: Ce, atomic number: 55) is a Block S, Group 1, Period 6 element with an atomic weight of 132.9054519. The number of electrons in each of Cesium's shells is 2, 8, 18, 18, 8, 1 and its electron configuration is [Xe]6s1. Cesium Bohr ModelThe cesium atom has a radius of 265 pm and a Van der Waals radius of 343 pm. Cesium is a member of the alkali group of metals. It is one of three metals that occur as a liquid at room temperature, the others being mercury and gallium. Elemental CesiumCesium's main commercial source is pollucite ore; however, it is also found in beryl, avogadrite, pezzottaite, and londonite. Cesium was discovered by Robert Bunsen and Gustav Kirchhoff in 1860 and first isolated by Carl Setterberg in 1882. In its elemental form, cesium has a silvery gold appearance. The word Cesium originates from the Latin word "caesius," meaning "sky blue," which refers to the vibrant blue lines in its spectrum.

Lanthanum

See more Lanthanum products. Lanthanum (atomic symbol: La, atomic number: 57) is a Block F, Group 3, Period 6 element with an atomic weight of 138.90547. Lanthanum Bohr ModelThe number of electrons in each of lanthanum's shells is [2, 8, 18, 18, 9, 2] and its electron configuration is [Xe] 5d1 6s2. The lanthanum atom has a radius of 187 pm and a Van der Waals radius of 240 pm. Lanthanum was first discovered by Carl Mosander in 1838. In its elemental form, lanthanum has a silvery white appearance.Elemental Lanthanum It is a soft, malleable, and ductile metal that oxidizes easily in air. Lanthanum is the first element in the rare earth or lanthanide series. It is the model for all the other trivalent rare earths and it is the second most abundant of the rare earths after cerium. Lanthanum is found in minerals such as monazite and bastnasite. The name lanthanum originates from the Greek word Lanthaneia, which means 'to lie hidden'.

Lithium

Lithium Bohr ModelSee more Lithium products. Lithium (atomic symbol: Li, atomic number: 3) is a Block S, Group 1, Period 2 element with an atomic weight of 6.94. The number of electrons in each of Lithium's shells is [2, 1] and its electron configuration is [He] 2s1. The lithium atom has a radius of 152 pm and a Van der Waals radius of 181 pm. Lithium was discovered by Johann Arvedson in 1817 and first isolated by William Thomas Brande in 1821. The origin of the name Lithium comes from the Greek wordlithose which means "stone." Lithium is a member of the alkali group of metals. It has the highest specific heat and electrochemical potential of any element on the period table and the lowest density of any elements that are solid at room temperature. Elemental LithiumCompared to other metals, it has one of the lowest boiling points. In its elemental form, lithium is soft enough to cut with a knife its silvery white appearance quickly darkens when exposed to air. Because of its high reactivity, elemental lithium does not occur in nature. Lithium is the key component of lithium-ion battery technology, which is becoming increasingly more prevalent in electronics.

TODAY'S TOP DISCOVERY!

April 18, 2024
Los Angeles, CA
Each business day American Elements' scientists & engineers post their choice for the most exciting materials science news of the day
Researchers develop enzymatic cocktail that can kill tuberculosis-causing mycobacteria

Researchers develop enzymatic cocktail that can kill tuberculosis-causing mycobacteria