Cobalt Chromium Tantalum Boron Sputtering Target

Linear Formula:

Co-Cr-Ta-B

MDL Number:

N/A

EC No.:

N/A

ORDER

PRODUCT Product Code ORDER SAFETY DATA TECHNICAL DATA
(2N) 99% Cobalt Chromium Tantalum Boron Sputtering Target
COCR-TAB-02-ST
Pricing > SDS > Data Sheet >
(3N) 99.9% Cobalt Chromium Tantalum Boron Sputtering Target
COCR-TAB-03-ST
Pricing > SDS > Data Sheet >
(4N) 99.99% Cobalt Chromium Tantalum Boron Sputtering Target
COCR-TAB-04-ST
Pricing > SDS > Data Sheet >
(5N) 99.999% Cobalt Chromium Tantalum Boron Sputtering Target
COCR-TAB-05-ST
Pricing > SDS > Data Sheet >

Cobalt Chromium Tantalum Boron Sputtering Target Properties (Theoretical)

Compound Formula CoCrTaB
Appearance Metallic Target
Melting Point N/A
Boiling Point N/A
Density N/A
Solubility in H2O N/A

Cobalt Chromium Tantalum Boron Sputtering Target Health & Safety Information

Signal Word N/A
Hazard Statements N/A
Hazard Codes N/A
RTECS Number N/A
Transport Information N/A
MSDS / SDS

About Cobalt Chromium Tantalum Boron Sputtering Target

High Purity (99.99%) Cobalt Chromium Tantalum Boron Sputtering TargetAmerican Elements specializes in producing high purity Cobalt Chromium Tantalum Boron Sputtering Targets with the highest possible density and smallest possible average grain sizes for use in semiconductor, chemical vapor deposition (CVD) and physical vapor deposition (PVD) display and optical applications. Our standard Sputtering Targets for thin film are available monoblock or bonded with planar target dimensions and configurations up to 820 mm with hole drill locations and threading, beveling, grooves and backing designed to work with both older sputtering devices as well as the latest process equipment, such as large area coating for solar energy or fuel cells and flip-chip applications. We offer all shapes and configurations of targets compatible with all standard guns including circular, rectangular, annular, oval, "dog-bone," rotatable (rotary), multi-tiled and others in standard, custom, and research sized dimensions. All targets are analyzed using best demonstrated techniques including X-Ray Fluorescence (XRF), Glow Discharge Mass Spectrometry (GDMS), and Inductively Coupled Plasma (ICP). "Sputtering" allows for thin film deposition of an ultra high purity sputtering metallic or oxide material onto another solid substrate by the controlled removal and conversion of the target material into a directed gaseous/plasma phase through ionic bombardment. Materials are produced using crystallization, solid state and other ultra high purification processes such as sublimation. American Elements specializes in producing custom compositions for commercial and research applications and for new proprietary technologies. Please contact us for information on lead time and pricing above.

Cobalt Chromium Tantalum Boron Sputtering Target Synonyms

CoCrTaB

Chemical Identifiers

Linear Formula Co-Cr-Ta-B
MDL Number N/A
EC No. N/A

Packaging Specifications

Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Safety Data Sheet (SDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes, and 36,000 lb. tanker trucks.

Payment Methods

American Elements accepts checks, wire transfers, ACH, most major credit and debit cards (Visa, MasterCard, AMEX, Discover) and Paypal.

For the convenience of our international customers, American Elements offers the following additional payment methods:

SOFORT bank tranfer payment for Austria, Belgium, Germany and SwitzerlandJCB cards for Japan and WorldwideBoleto Bancario for BraziliDeal payments for the Netherlands, Germany, Austria, Belgium, Italy, Poland, Spain, Switzerland, and the United KingdomGiroPay for GermanyDankort cards for DenmarkElo cards for BrazileNETS for SingaporeCartaSi for ItalyCarte-Bleue cards for FranceChina UnionPayHipercard cards for BrazilTROY cards for TurkeyBC cards for South KoreaRuPay for India

Related Elements

Boron

See more Boron products. Boron Bohr ModelBoron (atomic symbol: B, atomic number: 5) is a Block P, Group 13, Period 2 element with an atomic weight of 10.81. The number of electrons in each of boron's shells is 2, 3 and its electron configuration is [He] 2s2 2p1. The boron atom has a radius of 90 pm and a Van der Waals radius of 192 pm. Boron was discovered by Joseph Louis Gay-Lussac and Louis Jacques Thénard in 1808 and was first isolated by Humphry Davy later that year. Boron is classified as a metalloid is not found naturally on earth. Elemental BoronAlong with carbon and nitrogen, boron is one of the few elements in the periodic table known to form stable compounds featuring triple bonds. Boron has an energy band gap of 1.50 to 1.56 eV, which is higher than that of either silicon or germanium. The name Boron originates from a combination of carbon and the Arabic word buraqu meaning borax.

Chromium

See more Chromium products. Chromium (atomic symbol: Cr, atomic number: 24) is a Block D, Group 6, Period 4 element with an atomic weight of 51.9961. Chromium Bohr ModelThe number of electrons in each of Chromium's shells is 2, 8, 13, 1 and its electron configuration is [Ar] 3d5 4s1. Louis Nicolas Vauquelin first discovered chromium in 1797 and first isolated it the following year. The chromium atom has a radius of 128 pm and a Van der Waals radius of 189 pm. In its elemental form, chromium has a lustrous steel-gray appearance. Elemental ChromiumChromium is the hardest metallic element in the periodic table and the only element that exhibits antiferromagnetic ordering at room temperature, above which it transforms into a paramagnetic solid. The most common source of chromium is chromite ore (FeCr2O4). Due to its various colorful compounds, Chromium was named after the Greek word 'chroma.' meaning color.

Cobalt

See more Cobalt products. Cobalt (atomic symbol: Co, atomic number: 27) is a Block D, Group 9, Period 4 element with an atomic weight of 58.933195. Cobalt Bohr ModelThe number of electrons in each of cobalt's shells is 2, 8, 15, 2 and its electron configuration is [Ar]3d7 4s2. The cobalt atom has a radius of 125 pm and a Van der Waals radius of 192 pm. Cobalt was first discovered by George Brandt in 1732. In its elemental form, cobalt has a lustrous gray appearance. Cobalt is found in cobaltite, erythrite, glaucodot and skutterudite ores. Elemental CobaltCobalt produces brilliant blue pigments which have been used since ancient times to color paint and glass. Cobalt is a ferromagnetic metal and is used primarily in the production of magnetic and high-strength superalloys. Co-60, a commercially important radioisotope, is useful as a radioactive tracer and gamma ray source. The origin of the word Cobalt comes from the German word "Kobalt" or "Kobold," which translates as "goblin," "elf" or "evil spirit.

Tantalum

See more Tantalum products. Tantalum (atomic symbol: Ta, atomic number: 73) is a Block D, Group 5, Period 6 element with an atomic weight of 180.94788. Tantalum Bohr ModelThe number of electrons in each of tantalum's shells is [2, 8, 18, 32, 11, 2] and its electron configuration is [Xe] 4f14 5d3 6s2. The tantalum atom has a radius of 146 pm and a Van der Waals radius of 217 pm. High Purity (99.999%) Tantalum (Ta) MetalTantalum was first discovered by Anders G. Ekeberg in 1802 in Uppsala, Sweden however, it was not until 1844 when Heinrich Rose first recognized it as a distinct element. In its elemental form, tantalum has a grayish blue appearance. Tantalum is found in the minerals tantalite, microlite, wodginite, euxenite, and polycrase. Due to the close relation of tantalum to niobium in the periodic table, Tantalum's name originates from the Greek word Tantalos meaning Father of Niobe in Greek mythology.

TODAY'S TOP DISCOVERY!

March 28, 2024
Los Angeles, CA
Each business day American Elements' scientists & engineers post their choice for the most exciting materials science news of the day
University of Michigan researchers develop new fabrication process for helical metal nanoparticles

University of Michigan researchers develop new fabrication process for helical metal nanoparticles