Comparison of Stabilizer Effects on the Size, Dispersion, and Catalytic Property of Pt, PtCu, and PtRu Nanoparticles.

Title Comparison of Stabilizer Effects on the Size, Dispersion, and Catalytic Property of Pt, PtCu, and PtRu Nanoparticles.
Authors J. Kugai; S. Seino; T. Nakagawa; T.A. Yamamoto; S. Tanaka; N. Taguchi
Journal J Nanosci Nanotechnol
DOI 10.1166/jnn.2018.15437
Abstract

Carbon-supported Pt, Pt-Cu, and Pt-Ru nanoparticles were prepared by an alcohol reduction method in the presence of carboxylates and phosphinate in order to investigate the role of these stabilizers in the nanoparticle formation process and the effect on catalytic properties in 2-propanol oxidation. For the Pt-Cu system, long chain carboxylate gave small dispersed particles even with high metal loading while phosphinate gave aggregated particles. For the Pt and Pt-Ru systems, fewer aggregates were observed and the particle size was independent of the chain length of carboxylate while much smaller and dispersed particles were obtained with phosphinate. Phosphinate mainly prevents metal crystal growth while carboxylates prevent both crystal growth and formation of aggregated particles. Although surface poisoning is severe on small dispersed particles in 2-propanol oxidation, dehydrogenation of 2-propanol at low potential is little affected. Phosphinate-protected catalysts were more tolerant to poisoning promoting 2-propanol electrooxidation at high potential range. The presence of Cu promoted 2-propanol electrooxidation at low potential range. These components made phosphinate-protected PtCu best perform in 2-propanol oxidation at 30 °C.

Citation J. Kugai; S. Seino; T. Nakagawa; T.A. Yamamoto; S. Tanaka; N. Taguchi.Comparison of Stabilizer Effects on the Size, Dispersion, and Catalytic Property of Pt, PtCu, and PtRu Nanoparticles.. J Nanosci Nanotechnol. 2018;18(8):57385748. doi:10.1166/jnn.2018.15437

Related Elements

Copper

See more Copper products. Copper Bohr Model Copper (atomic symbol: Cu, atomic number: 29) is a Block D, Group 11, Period 4 element with an atomic weight of 63.546. The number of electrons in each of copper's shells is 2, 8, 18, 1 and its electron configuration is [Ar]3d10 4s1. The copper atom has a radius of 128 pm and a Van der Waals radius of 186 pm. Copper was first discovered by Early Man prior to 9000 BC. In its elemental form, copper has a reddish-orange metallic and lustrous appearance. Of all pure metals, only silver Elemental Copperhas a higher electrical conductivity. The origin of the word copper comes from the Latin word 'cuprium' which translates as "metal of Cyprus," as the Mediterranean island of Cyprus was known as an ancient source of mined copper..

Platinum

See more Platinum products. Platinum (atomic symbol: Pt, atomic number: 78) is a Block D, Group 10, Period 6 element with an atomic weight of 195.084. The number of electrons in each of platinum's shells is [2, 8, 18, 32, 17, 1] and its electron configuration is [Xe] 4f14 5d9 6s1. The platinum atom has a radius of 139 pm and a Van der Waals radius of 175 pm. Platinum Bohr ModelElemental PlatinumPlatinum was discovered and first isolated by Antonio de Ulloa in 1735. It is one of the rarest elements in the earth's crust, occurring at a concentration of only 0.005 ppm. Platinum is found uncombined as a free element and alloyed with iridium as platiniridium. In its elemental form, platinum has a grayish white appearance. It is highly resistant to corrosion: the metal does not oxidize in air at any temperature. It is generally non-reactive, even at high temperatures. The origin of the name "platinum" comes from the Spanish word platina, meaning silver.

Ruthenium

See more Ruthenium products. Ruthenium (atomic symbol: Ru, atomic number: 44) is a Block D, Group 8, Period 5 element with an atomic weight of 101.07. Ruthenium Bohr ModelThe number of electrons in each of ruthenium's shells is [2, 8, 18, 15, 1] and its electron configuration is [Kr] 4d7 5s1. The ruthenium atom has a radius of 134 pm and a Van der Waals radius of 207 pm. Ruthenium was discovered by Jędrzej Śniadecki in 1807. It was first recognized as a distinct element by Karl Ernst Claus in 1844. Elemental RutheniumIn its elemental form, ruthenium has a silvery white metallic appearance. Ruthenium is a rare transition metal belonging to the platinum group of metals. It is found in pentlandite, pyroxenite, and platinum group metal ores. The name Ruthenium originates from the Latin word "Ruthenia," meaning Russia.

Related Forms & Applications