Skip to Page Content

Copper Iron Alloy

Cu-Fe Alloy


Product Product Code Request Quote
Cu-96% Fe-4% CU-FE-01-P.04FE Request Quote
Cu-70% Fe-30% CU-FE-01-P.30FE Request Quote

Copper Iron is one of numerous metal alloys sold by American Elements under the tradename AE Alloys™. Generally immediately available in most volumes, AE Alloys™ are available as bar, ingot, ribbon, wire, shot, sheet, and foil. Ultra high purity and high purity forms also include metal powder, submicron powder and nanoscale, targets for thin film deposition, and pellets for chemical vapor deposition (CVD) and physical vapor deposition (PVD) applications. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Primary applications include bearing assembly, ballast, casting, step soldering, and radiation shielding.

Copper Bohr ModelCopper (Cu) atomic and molecular weight, atomic number and elemental symbolCopper (atomic symbol: Cu, atomic number: 29) is a Block D, Group 11, Period 4 element with an atomic weight of 63.546. The number of electrons in each of copper's shells is 2, 8, 18, 1 and its electron configuration is [Ar] 3d10 4s1. The copper atom has a radius of 128 pm and a Van der Waals radius of 186 pm. Copper was first discovered by Early Man prior to 9000 BC. In its elemental form, copper has a red-orange metallic luster appearance. Elemental Copper Of all pure metals, only silver has a higher electrical conductivity.The origin of the word copper comes from the Latin word 'cuprium' which translates as "metal of Cyprus." Cyprus, a Mediterranean island, was known as an ancient source of mined copper. For more information on copper, including properties, safety data, research, and American Elements' catalog of copper products, visit the Copper element page.

Iron (Fe) atomic and molecular weight, atomic number and elemental symbolIron (atomic symbol: Fe, atomic number: 26) is a Block D, Group 8, Period 4 element with an atomic weight of 55.845. The number of electrons in each of Iron's shells is 2, 8, 14, 2 and its electron configuration is [Ar] 3d6 4s2.Iron Bohr Model The iron atom has a radius of 126 pm and a Van der Waals radius of 194 pm. Iron was discovered by humans before 5000 BC. In its elemental form, iron has a lustrous grayish metallic appearance. Elemental Iron Iron is the fourth most common element in the Earth's crust and the most common element by mass forming the earth as a whole. Iron is rarely found as a free element, since it tends to oxidize easily; it is usually found in minerals such as magnetite, hematite, goethite, limonite, or siderite. Though pure iron is typically soft, the addition of carbon creates the alloy known as steel, which is significantly stronger. For more information on iron, including properties, safety data, research, and American Elements' catalog of iron products, visit the Iron element page.


CUSTOMERS FOR COPPER IRON ALLOY HAVE ALSO LOOKED AT
Copper Oxide Copper Nitrate Copper Pellets Copper Acetylacetonate Copper Acetate
Copper Tin Silver Alloy Copper Metal Copper Oxide Pellets Copper Wire Copper Foil
Copper Chloride Copper Sputtering Target Copper Powder Copper Nanoparticles Aluminum Magnesium Copper Alloy
Show Me MORE Forms of Copper

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis

Recent Research & Development for Copper

  • Crystal structure of tetra-kis-(μ3-2-{[1,1-bis-(hy-droxy-meth-yl)-2-oxidoeth-yl]imino-meth-yl}phenolato)tetra-copper(II) ethanol monosolvate 2.5-hydrate.. Wang W, Ran J.. Acta Crystallogr E Crystallogr Commun. 2015 Apr 22
  • Crystal structure of di-chlorido-bis-(methyl isonicotinate-κN)copper(II).. Ahadi E, Hosseini-Monfared H, Mayer P.. Acta Crystallogr E Crystallogr Commun. 2015 Apr 18
  • Copper, lead and zinc removal from metal contaminated wastewater by adsorption onto agricultural wastes.. Janyasuthiwong S, Phiri SM, Kijjanapanich P, Rene ER, Esposito G, Lens PN.. Environ Technol. 2015 May 22:1-33.
  • Co-solvent enhanced zinc oxysulfide buffer layers in Kesterite copper zinc tin selenide solar cells.. Steirer KX, Garris RL, Li JV, Dzara MJ, Ndione PF, Ramanathan K, Repins I, Teeter G, Perkins CL.. Phys Chem Chem Phys. 2015 May 22.
  • The relative importance of diet-related and waterborne effects of copper for a leaf-shredding invertebrate.. Zubrod JP, Englert D, Rosenfeldt RR, Wolfram J, Lüderwald S, Wallace D, Schnetzer N, Schulz R, Bundschuh M.. Environ Pollut. 2015 May 19
  • Low-current field-assisted assembly of copper nanoparticles for current collectors.. Liu L, Choi BG, Tung SO, Hu T, Liu Y, Li T, Zhao T, Kotov NA.. Faraday Discuss. 2015 May 21.
  • Toxic potential of copper-doped ZnO nanoparticles in Drosophila melanogaster (Oregon R).. Siddique YH, Haidari M, Khan W, Fatima A, Jyoti S, Khanam S, Naz F, Rahul, Ali F, Singh BR, Beg T, Mohibullah, Naqvi AH.. Toxicol Mech Methods. 2015 May 22:1-8.
  • Being two is better than one-catalytic reductions with dendrimer encapsulated copper- and copper-cobalt-subnanoparticles.. Ficker M, Petersen JF, Gschneidtner T, Rasmussen AL, Purdy T, Hansen JS, Hansen TH, Husted S, Moth Poulsen K, Olsson E, Christensen JB.. Chem Commun (Camb). 2015 May 22.
  • Sustainable Hydrogen Production by Ethanol Steam Reforming using a Partially Reduced Copper-Nickel Oxide Catalyst. Chen LC, Cheng H, Chiang CW, Lin SD. ChemSusChem. 2015 Apr 15.: ChemSusChem
  • Aerosol assisted CVD grown WO3 nanoneedles decorated with copper oxide nanoparticles for the selective and humidity resilient detection of H2S. Annanouch FE, Haddi Z, Vallejos S, Umek P, Guttmann P, Bittencourt C, Llobet E. ACS Appl Mater Interfaces. 2015 Mar 16.

Recent Research & Development for Iron

  • Humic acids enhance the microbially mediated release of sedimentary ferrous iron.. Chang CH, Wei CC, Lin LH, Tu TH, Liao VH.. Environ Sci Pollut Res Int. 2015 May 22.
  • An update on iron acquisition by Legionella pneumophila: new pathways for siderophore uptake and ferric iron reduction.. Cianciotto NP.. Future Microbiol. 2015 May
  • Iron accumulation promotes TACE-mediated TNF-α secretion and neurodegeneration in a mouse model of ALS.. Lee JK, Shin JH, Gwag BJ, Choi EJ.. Neurobiol Dis. 2015 May 19.
  • Colorimetric detection of iron ions (III) based on the highly sensitive plasmonic response of the N-acetyl-l-cysteine-stabilized silver nanoparticles.. Gao X, Lu Y, He S, Li X, Chen W.. Anal Chim Acta. 2015 Jun 16
  • Superparamagnetic iron oxide as a tracer for sentinel node biopsy in breast cancer: A comparative non-inferiority study.. Piñero-Madrona A, Torró-Richart JA, de León-Carrillo JM, de Castro-Parga G, Navarro-Cecilia J, Domínguez-Cunchillos F, Román-Santamaría JM, Fuster-Diana C, Pardo-García R; “Grupo de Estudios Senológicos de la Sociedad Española de Patologia Mamaria (SESPM)”.. Eur J Surg Oncol. 2015 May 12.
  • Functionalized magnetic iron oxide/alginate core-shell nanoparticles for targeting hyperthermia.. Liao SH, Liu CH, Bastakoti BP, Suzuki N, Chang Y, Yamauchi Y, Lin FH, Wu KC.. Int J Nanomedicine. 2015 May 4
  • Characterization of the enhancement of zero valent iron on microbial azo reduction. Fang Y, Xu M, Wu WM, Chen X, Sun G, Guo J, Liu X. BMC Microbiol. 2015 Apr 10: BMC Microbiol
  • Superparamagnetic iron oxide nanoparticles for in vivo molecular and cellular imaging. Sharifi S, Seyednejad H, Laurent S, Atyabi F, Saei AA, Mahmoudi M. Contrast Media Mol Imaging. 2015 Apr 16.: Contrast Media Mol Imaging
  • Transformation of triclosan to 2,8-dichlorodibenzo-p-dioxin by iron and manganese oxides under near dry conditions. Ding J, Su M, Wu C, Lin K. Chemosphere. 2015 Apr 13: Chemosphere
  • Application of iron oxide b nanoparticles in neuronal tissue engineering. Ziv-Polat O, Margel S, Shahar A. Neural Regen Res. 2015 Feb: Neural Regen Res