Development of a nickel plated aluminum krypton-81m target system.

Title Development of a nickel plated aluminum krypton-81m target system.
Authors F. Alrumayan; S.M. Okarvi; K. Nagatsu; S. Yanbawi; I. Aljammaz
Journal Appl Radiat Isot
DOI 10.1016/j.apradiso.2016.12.008

A fully automated system was developed to produce rubidium-81 ((81)Rb), based on the (nat)Kr (p, n) (81)Rb reaction. The energy incident on the target was 26MeV. Only 6MeV was stopped inside the gas and the remainder was stopped by a specially designed flange. The target body was characterized by its conical shape and its inner walls were chemically plated with 100±10µm of nickel (Ni). Ni is advantageous as a fairly good conductor of heat whose surface can resist solutions. Additionally, the Ni plated target allowed potassium chloride to dissolve (81)Rb, with no further effect on the target body. The system produced (81)Rb with a production yield of approximately 4.5mCi/µAh, which is close to the calculated expected yield of 5.3mCi/µAh. The system is able to deliver reliable and reproducible radioactivity for patients and can be operated up to 1500µAh before preventive maintenance is due. Key steps in designing the (81)Rb target for selected energy ranges are reported here.

Citation F. Alrumayan; S.M. Okarvi; K. Nagatsu; S. Yanbawi; I. Aljammaz.Development of a nickel plated aluminum krypton-81m target system.. Appl Radiat Isot. 2017;121:611. doi:10.1016/j.apradiso.2016.12.008

Related Elements


See more Aluminum products. Aluminum (or Aluminium) (atomic symbol: Al, atomic number: 13) is a Block P, Group 13, Period 3 element with an atomic weight of 26.9815386. It is the third most abundant element in the earth's crust and the most abundant metallic element. Aluminum Bohr Model Aluminum's name is derived from alumina, the mineral from which Sir Humphrey Davy attempted to refine it from in 1812. Aluminum was first predicted by Antoine Lavoisier 1787 and first isolated by Hans Christian Øersted in 1825. Aluminum is a silvery gray metal that possesses many desirable characteristics. It is light, nonmagnetic and non-sparking. It stands second among metals in the scale of malleability, and sixth in ductility. It is extensively used in many industrial applications where a strong, light, easily constructed material is needed. Elemental AluminumAlthough it has only 60% of the electrical conductivity of copper, it is used in electrical transmission lines because of its light weight. Pure aluminum is soft and lacks strength, but alloyed with small amounts of copper, magnesium, silicon, manganese, or other elements, it imparts a variety of useful properties.


See more Nickel products. Nickel (atomic symbol: Ni, atomic number: 28) is a Block D, Group 4, Period 4 element with an atomic weight of 58.6934. Nickel Bohr ModelThe number of electrons in each of nickel's shells is [2, 8, 16, 2] and its electron configuration is [Ar]3d8 4s2. Nickel was first discovered by Alex Constedt in 1751. The nickel atom has a radius of 124 pm and a Van der Waals radius of 184 pm. In its elemental form, nickel has a lustrous metallic silver appearance. Nickel is a hard and ductile transition metal that is considered corrosion-resistant because of its slow rate of oxidation. Elemental NickelIt is one of four elements that are ferromagnetic and is used in the production of various type of magnets for commercial use. Nickel is sometimes found free in nature but is more commonly found in ores. The bulk of mined nickel comes from laterite and magmatic sulfide ores. The name originates from the German word kupfernickel, which means "false copper" from the illusory copper color of the ore.

Related Forms & Applications