CAS #:

Linear Formula:


MDL Number:


EC No.:



Dibutyltin Dichloride
Pricing > SDS > Data Sheet >

Dibutyltin Dichloride Properties (Theoretical)

Compound Formula C8H18Cl2Sn
Molecular Weight 303.85
Appearance White to off-white crystals or crystalline solid
Melting Point 37-38 °C
Boiling Point 135-148 °C
Density 1.43 g/cm3
Solubility in H2O 0.32 g/l
Exact Mass 303.981 g/mol
Monoisotopic Mass 303.981 g/mol

Dibutyltin Dichloride Health & Safety Information

Signal Word Danger
Hazard Statements H301-H312-H314-H317-H330-H341-H360FD-H370-H372-H410
Hazard Codes C, T, N
Precautionary Statements P201-P202-P260-P273-P264-P280-P304+P340+P310-P305+P351+P338-P308+P311
Flash Point 113 °C (closed cup)
Risk Codes R 60-61-21-25-26-48/25-34-68-50/53
Safety Statements S 53-45-60-61
RTECS Number WH7100000
Transport Information UN3146 6.1/PGII
WGK Germany 3
GHS Pictograms

About Dibutyltin Dichloride

Dibutyltin Dichloride is one of numerous organometallic compounds manufactured by American Elements under the trade name AE Organometallics™. Organometallics are useful reagents, catalysts, and precursor materials with applications in thin film deposition, industrial chemistry, pharmaceuticals, LED manufacturing, and others. American Elements supplies organometallic compounds in most volumes including bulk quantities and also can produce materials to customer specifications. Most materials can be produced in high and ultra high purity forms (99%, 99.9%, 99.99%, 99.999%, and higher) and to many standard grades when applicable including Mil Spec (military grade), ACS, Reagent and Technical Grades, Pharmaceutical Grades, Optical, Semiconductor, and Electronics Grades. Please request a quote above for more information on pricing and lead time.

Dibutyltin Dichloride Synonyms

DBTC chloride, Dibutyl tin chloride, Dibutyldichlorotin, Di-n-butyltin dichloride, Dibutylstannium dichloride, Stannane, dibutyldichloro-, UNII J4AQN88R8P

Chemical Identifiers

Linear Formula (CH3CH2CH2CH2)2SnCl2
MDL Number MFCD00000518
EC No. 211-670-0
Beilstein/Reaxys No. 3535484
Pubchem CID 12688
IUPAC Name dibutyl(dichloro)stannane
SMILES InChI=1S/2C4H9.2ClH.Sn/c2*1-3-4-2;;;/h2*1,3-4H2,2H3;2*1H;/q;;;;+2/p-2
InchI Identifier CCCC[Sn](CCCC)(Cl)Cl

Packaging Specifications

Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Safety Data Sheet (SDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes, and 36,000 lb. tanker trucks.

Related Elements


Chlorine is a Block P, Group 17, Period 3 element. Its electron configuration is [Ne]3s23p5. The chlorine atom has a covalent radius of 102±4 pm and its Van der Waals radius is 175 pm. Chlorine ModelIn its elemental form, chlorine is a yellow-green gas. Chlorine is the second lightest halogen after fluorine. It has the third highest electronegativity and the highest electron affinity of all elements, making it a strong oxidizing agent. It is rarely found by itself in nature. Chlorine was discovered and first isolated by Carl Wilhelm Scheele in 1774. It was first recognized as an element by Humphry Davy in 1808.


Tin Bohr ModelSee more Tin products. Tin (atomic symbol: Sn, atomic number: 50) is a Block P, Group 14, Period 5 element with an atomic weight of 118.710. The number of electrons in each of tin's shells is 2, 8, 18, 18, 4 and its electron configuration is [Kr] 4d10 5s2 5p2. The tin atom has a radius of 140.5 pm and a Van der Waals radius of 217 pm.In its elemental form, tin has a silvery-gray metallic appearance. It is malleable, ductile and highly crystalline. High Purity (99.9999%) Tin (Sn) MetalTin has nine stable isotopes and 18 unstable isotopes. Under 3.72 degrees Kelvin, Tin becomes a superconductor. Applications for tin include soldering, plating, and such alloys as pewter. The first uses of tin can be dated to the Bronze Age around 3000 BC in which tin and copper were combined to make the alloy bronze. The origin of the word tin comes from the Latin word Stannum which translates to the Anglo-Saxon word tin. For more information on tin, including properties, safety data, research, and American Elements' catalog of tin products, visit the Tin element page.

Recent Research


November 27, 2021
Los Angeles, CA
Each business day American Elements' scientists & engineers post their choice for the most exciting materials science news of the day

Tiny droplets offer glimpse of real life inside a living cell