Effect of Low Dose Lead (Pb) Administration on Tail Immersion Test and Formalin-induced Pain in Wistar Rats: Possible Modulatory Role of Cobalt (II) Chloride.

Title Effect of Low Dose Lead (Pb) Administration on Tail Immersion Test and Formalin-induced Pain in Wistar Rats: Possible Modulatory Role of Cobalt (II) Chloride.
Authors A.H. Umar; I. Suleiman; H. Muhammed
Journal Niger J Physiol Sci
DOI
Abstract

Lead (Pb) is cheap and there is a long tradition of its use, but its toxic effects have also been recognized. There is increased public health concern regarding the hazards of low dose Pb exposure to adults and children. Studies have shown the risks for hypertension, decrements in renal function, subtle decline in cognitive function, and adverse reproductive outcome at low blood Pb level. In this study, the possible modulatory role of cobalt (II) chloride (CoCl2) on low level Pb exposure on tail immersion test and formalin induced pain was investigated. Twenty adult Wistar rats of both sexes (weight 150g to 200g) were used. The animals were divided into four groups (n = 5) and administered Pb (5mg/kg), Pb (5mg/kg) + CoCl2 (50mg/kg) and CoCl2 (50mg/kg) orally for twenty-eight days. The last group served as control and were given distilled water only. In the tail immersion test, there was no significant change in reaction time for all three groups when compared to the control. In the formalin-induced pain, pain score after five and forty-five minutes also do not show significant change for all the three groups when compared to control. This work suggested that exposure to 5mg/kg Pb for twenty-eight days do not significantly impair reaction time in tail immersion test and pain score in formalin induced pain in Wistar rats. Also, administration of 50mg/kg CoCl2 do not improve performance of the animals in the experiments.

Citation A.H. Umar; I. Suleiman; H. Muhammed.Effect of Low Dose Lead (Pb) Administration on Tail Immersion Test and Formalin-induced Pain in Wistar Rats: Possible Modulatory Role of Cobalt (II) Chloride.. Niger J Physiol Sci. 2017;31(2):161164. doi:

Related Elements

Chlorine

Chlorine is a Block P, Group 17, Period 3 element. Its electron configuration is [Ne]3s23p5. The chlorine atom has a covalent radius of 102±4 pm and its Van der Waals radius is 175 pm. Chlorine ModelIn its elemental form, chlorine is a yellow-green gas. Chlorine is the second lightest halogen after fluorine. It has the third highest electronegativity and the highest electron affinity of all elements, making it a strong oxidizing agent. It is rarely found by itself in nature. Chlorine was discovered and first isolated by Carl Wilhelm Scheele in 1774. It was first recognized as an element by Humphry Davy in 1808.

Cobalt

See more Cobalt products. Cobalt (atomic symbol: Co, atomic number: 27) is a Block D, Group 9, Period 4 element with an atomic weight of 58.933195. Cobalt Bohr ModelThe number of electrons in each of cobalt's shells is 2, 8, 15, 2 and its electron configuration is [Ar]3d7 4s2. The cobalt atom has a radius of 125 pm and a Van der Waals radius of 192 pm. Cobalt was first discovered by George Brandt in 1732. In its elemental form, cobalt has a lustrous gray appearance. Cobalt is found in cobaltite, erythrite, glaucodot and skutterudite ores. Elemental CobaltCobalt produces brilliant blue pigments which have been used since ancient times to color paint and glass. Cobalt is a ferromagnetic metal and is used primarily in the production of magnetic and high-strength superalloys. Co-60, a commercially important radioisotope, is useful as a radioactive tracer and gamma ray source. The origin of the word Cobalt comes from the German word "Kobalt" or "Kobold," which translates as "goblin," "elf" or "evil spirit.

Lead

Lead Bohr ModelSee more Lead products. Lead (atomic symbol: Pb, atomic number: 82) is a Block P, Group 14, Period 6 element with an atomic radius of 207.2. The number of electrons in each of Lead's shells is [2, 8, 18, 32, 18, 4] and its electron configuration is [Xe] 4f14 5d10 6s2 6p2. The lead atom has a radius of 175 pm and a Van der Waals radius of 202 pm. In its elemental form, lead has a metallic gray appearance. Lead occurs naturally as a mixture of four stable isotopes: 204Pb (1.48%), 206Pb (23.6%), 207Pb (22.6%), and 208Pb (52.3%). Elemental LeadLead is obtained mainly from galena (PbS) by a roasting process. Anglesite, cerussite, and minim are other common lead containing minerals. Lead does occur as a free element in nature, but it is rare. It is a dense, soft metal that is very resistant to corrosion and poorly conductive compared to other metals. Its density and low melting point make it useful in applications such as electrolysis and industrial materials.

Related Forms & Applications