Effect of strontium substitution on the cytocompatibility and 3-D scaffold structure for the xSrO-(10-x) MgO-60SiO2-20CaO-10 P2O5 (2???x???8) sol-gel glasses.

Title Effect of strontium substitution on the cytocompatibility and 3-D scaffold structure for the xSrO-(10-x) MgO-60SiO2-20CaO-10 P2O5 (2???x???8) sol-gel glasses.
Authors S. Thakur; S. Garg; G. Kaur; O.Prakash Pandey
Journal J Mater Sci Mater Med
DOI 10.1007/s10856-017-5901-z
Abstract

In the present study, novel glasses xSrO-(10-x) MgO-60SiO2-20CaO-10 P2O5 (2???x???8, in steps of 2) are synthesized via sol-gel method. The current work focusses on the evaluation of mechanical, physical and biocompatible properties for sol-gel glasses. The pore size and surface area of these glasses were studied using BET analysis. The structural aspect of the glasses/glass ceramics was studied by XRD and Raman spectroscopy. The cytotoxicity assays were conducted for MG63 human osteosarcoma cell line. Furthermore, the as prepared glasses were used for the fabrication of 3-D porous scaffolds via polymer replication method. The loaded green bodies have been sintered at 700, 800 and 900?°C and were kept for 6?h to densify the glass network. The effect of sintering temperature on the structure and properties of as prepared scaffolds were analyzed via scanning electron microscopy (SEM) and porosity calculations.

Citation S. Thakur; S. Garg; G. Kaur; O.Prakash Pandey.Effect of strontium substitution on the cytocompatibility and 3-D scaffold structure for the xSrO-(10-x) MgO-60SiO2-20CaO-10 P2O5 (2???x???8) sol-gel glasses.. J Mater Sci Mater Med. 2017;28(6):89. doi:10.1007/s10856-017-5901-z

Related Elements

Strontium

See more Strontium products. Strontium (atomic symbol: Sr, atomic number: 38) is a Block S, Group 2, Period 5 element with an atomic weight of 87.62 . Strontium Bohr ModelThe number of electrons in each of Strontium's shells is [2, 8, 18, 8, 2] and its electron configuration is [Kr] 5s2. The strontium atom has a radius of 215 pm and a Van der Waals radius of 249 pm. Strontium was discovered by William Cruickshank in 1787 and first isolated by Humphry Davy in 1808. In its elemental form, strontium is a soft, silvery white metallic solid that quickly turns yellow when exposed to air. Elemental StrontiumCathode ray tubes in televisions are made of strontium, which are becoming increasingly displaced by other display technologies pyrotechnics and fireworks employ strontium salts to achieve a bright red color. Radioactive isotopes of strontium have been used in radioisotope thermoelectric generators (RTGs) and for certain cancer treatments. In nature, most strontium is found in celestite (as strontium sulfate) and strontianite (as strontium carbonate). Strontium was named after the Scottish town where it was discovered.

Magnesium

Magnesium Bohr ModelSee more Magnesium products. Magnesium (atomic symbol: Mg, atomic number: 12) is a Block S, Group 2, Period 3 element with an atomic mass of 24.3050. The number of electrons in each of Magnesium's shells is [2, 8, 2] and its electron configuration is [Ne] 3s2. The magnesium atom has a radius of 160 pm and a Van der Waals radius of 173 pm. Magnesium was discovered by Joseph Black in 1775 and first isolated by Sir Humphrey Davy in 1808. Magnesium is the eighth most abundant element in the earth's crust and the fourth most common element in the earth as a whole. Elemental MagnesiumIn its elemental form, magnesium has a shiny grey metallic appearance and is an extremely reactive. It is can be found in minerals such as brucite, carnallite, dolomite, magnesite, olivine and talc. Commercially, magnesium is primarily used in the creation of strong and lightweight aluminum-magnesium alloys, which have numerous advantages in industrial applications. The name "Magnesium" originates from a Greek district in Thessaly called Magnesia.

Related Forms & Applications