Encapsulation of cisplatin in a pegylated calcium phosphate nanoparticle (CPNP) for enhanced cytotoxicity to cancerous cells.

Title Encapsulation of cisplatin in a pegylated calcium phosphate nanoparticle (CPNP) for enhanced cytotoxicity to cancerous cells.
Authors Y. Ding; K. Zhai; P. Pei; Y. Lin; Y. Ma; H. Zhu; M. Shao; X. Yang; W. Tao
Journal J Colloid Interface Sci
DOI 10.1016/j.jcis.2017.01.032
Abstract

HYPOTHESIS: Exchange of the chloride ion (Cl(-)) ligands of cisplatin with carboxylates is widely used in fabricating cisplatin loaded nanoparticles for improved cancer therapy. However, the dynamic exchange may cause premature cisplatin release and even disintegration of the nanoparticles in Cl(-)-containing medium such as in plasma. Molecules bearing carboxylates are capable of mediating the mineralization process of calcium phosphate; therefore, it is possible to overcome the disadvantage by sequestering cisplatin in a calcium phosphate nanoparticle (CPNP).

EXPERIMENTS: With the hypothesis, precipitation reaction of calcium nitrate and disodium hydrogen phosphate was performed in a solution of poly(ethylene glycol)-poly(acrylic acid) block copolymers with their carboxylates partly conjugated with cisplatin. Then, structure, physicochemical properties, and bioactivity of the product were carefully investigated with multiple characterization methods.

FINDINGS: It was revealed a pegylated, cisplatin encapsulated CPNP was prepared; and with appropriate mole ratio of cisplatin to carboxylates, the nanoparticle encapsulated cisplatin efficiently (>90%), was stable and almost entirely prevented the cisplatin release in Cl(-)-containing medium at pH 7.4 but released them in an acidic condition, and showed moderately and greatly enhanced cytotoxicities to the lung cancer cell line A549 and its cisplatin resistance form A549R respectively in comparison with the free cisplatin.

Citation Y. Ding; K. Zhai; P. Pei; Y. Lin; Y. Ma; H. Zhu; M. Shao; X. Yang; W. Tao.Encapsulation of cisplatin in a pegylated calcium phosphate nanoparticle (CPNP) for enhanced cytotoxicity to cancerous cells.. J Colloid Interface Sci. 2017;493:181189. doi:10.1016/j.jcis.2017.01.032

Related Elements

Calcium

See more Calcium products. Calcium (atomic symbol: Ca, atomic number: 20) is a Block S, Group 2, Period 4 element with an atomic weight of 40.078. The number of electrons in each of Calcium's shells is [2, 8, 8, 2] and its electron configuration is [Ar]4s2. Calcium Bohr ModelThe calcium atom has a radius of 197 pm and a Van der Waals radius of 231 pm. Calcium was discovered and first isolated by Sir Humphrey Davy in 1808. It is the fifth most abundant element in the earth's crust and can be found in minerals such as dolomite, gypsum, plagioclases, amphiboles, pyroxenes and garnets. In its elemental form, calcium has a dull gray-silver appearance. Calcium is a reactive, soft metal that is a member of the alkaline earth elements. Elemental CalciumIt frequently serves as an alloying agent for other metals like aluminum and beryllium, and industrial materials like cement and mortar are composed of calcium compounds like calcium carbonate. It is also an biologically essential substance found in teeth, bones, and shells. The name "calcium" originates from the Latin word "calics," meaning lime.

Phosphorus

Phosphorus Bohr ModelSee more Phosphorus products. Phosphorus (atomic symbol: P, atomic number: 15) is a Block P, Group 15, Period 3 element. The number of electrons in each of Phosphorus's shells is 2, 8, 5 and its electronic configuration is [Ne] 3s2 3p3. The phosphorus atom has a radius of 110.5.pm and its Van der Waals radius is 180.pm. Phosphorus is a highly-reactive non-metallic element (sometimes considered a metalloid) with two primary allotropes, white phosphorus and red phosphorus its black flaky appearance is similar to graphitic carbon. Compound forms of phosphorus include phosphates and phosphides. Phosphorous was first recognized as an element by Hennig Brand in 1669 its name (phosphorus mirabilis, or "bearer of light") was inspired from the brilliant glow emitted by its distillation.

Related Forms & Applications